DOTA8 Veri Kümesi
Giriş
Ultralytics DOTA8 is a small, but versatile oriented object detection dataset composed of the first 8 images of 8 images of the split DOTAv1 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
This dataset is intended for use with Ultralytics HUB and YOLO11.
Veri Kümesi YAML
Veri kümesi yapılandırmasını tanımlamak için bir YAML (Yet Another Markup Language) dosyası kullanılır. Veri kümesinin yolları, sınıfları ve diğer ilgili bilgiler hakkında bilgi içerir. DOTA8 veri kümesi söz konusu olduğunda dota8.yaml
dosyası şu adreste tutulur https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/dota8.yaml.
ultralytics/cfg/datasets/dota8.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota8 ← downloads here (1MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/dota8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
# Classes for DOTA 1.0
names:
0: plane
1: ship
2: storage tank
3: baseball diamond
4: tennis court
5: basketball court
6: ground track field
7: harbor
8: bridge
9: large vehicle
10: small vehicle
11: helicopter
12: roundabout
13: soccer ball field
14: swimming pool
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
Kullanım
To train a YOLO11n-obb model on the DOTA8 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
Tren Örneği
Örnek Görüntüler ve Açıklamalar
Aşağıda DOTA8 veri kümesinden bazı görüntü örnekleri ve bunlara karşılık gelen ek açıklamalar yer almaktadır:
- Mozaiklenmiş Görüntü: Bu görüntü, mozaiklenmiş veri kümesi görüntülerinden oluşan bir eğitim grubunu göstermektedir. Mozaikleme, eğitim sırasında kullanılan ve her bir eğitim grubundaki nesne ve sahne çeşitliliğini artırmak için birden fazla görüntüyü tek bir görüntüde birleştiren bir tekniktir. Bu, modelin farklı nesne boyutlarına, en boy oranlarına ve bağlamlara genelleme yeteneğini geliştirmeye yardımcı olur.
Bu örnek, DOTA8 veri setindeki görüntülerin çeşitliliğini ve karmaşıklığını ve eğitim sürecinde mozaikleme kullanmanın faydalarını göstermektedir.
Atıflar ve Teşekkür
Araştırma veya geliştirme çalışmalarınızda DOTA veri setini kullanıyorsanız, lütfen aşağıdaki makaleye atıfta bulunun:
@article{9560031,
author={Ding, Jian and Xue, Nan and Xia, Gui-Song and Bai, Xiang and Yang, Wen and Yang, Michael and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3117983}
}
DOTA veri setlerinin arkasındaki ekibe, bu veri setinin küratörlüğünde gösterdikleri övgüye değer çaba için özel bir teşekkür notu. Veri setini ve nüanslarını kapsamlı bir şekilde anlamak için lütfen resmi DOTA web sitesini ziyaret edin.
SSS
DOTA8 veri seti nedir ve nasıl kullanılabilir?
The DOTA8 dataset is a small, versatile oriented object detection dataset made up of the first 8 images from the DOTAv1 split set, with 4 images designated for training and 4 for validation. It's ideal for testing and debugging object detection models like Ultralytics YOLO11. Due to its manageable size and diversity, it helps in identifying pipeline errors and running sanity checks before deploying larger datasets. Learn more about object detection with Ultralytics YOLO11.
How do I train a YOLO11 model using the DOTA8 dataset?
To train a YOLO11n-obb model on the DOTA8 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For comprehensive argument options, refer to the model Training page.
Tren Örneği
DOTA veri setinin temel özellikleri nelerdir ve YAML dosyasına nereden erişebilirim?
DOTA veri kümesi, büyük ölçekli kıyaslaması ve hava görüntülerinde nesne tespiti için sunduğu zorluklarla bilinir. DOTA8 alt kümesi, ilk testler için ideal olan daha küçük, yönetilebilir bir veri kümesidir. Erişim için dota8.yaml
yollarını, sınıfları ve yapılandırma ayrıntılarını içeren bu dosyada GitHub bağlantısı.
Mozaikleme DOTA8 veri seti ile model eğitimini nasıl geliştirir?
Mozaikleme, eğitim sırasında birden fazla görüntüyü tek bir görüntüde birleştirerek her bir gruptaki nesne ve bağlam çeşitliliğini artırır. Bu, bir modelin farklı nesne boyutlarına, en boy oranlarına ve sahnelere genelleme yeteneğini geliştirir. Bu teknik, mozaiklenmiş DOTA8 veri kümesi görüntülerinden oluşan bir eğitim grubu aracılığıyla görsel olarak gösterilebilir ve sağlam model geliştirmeye yardımcı olur. Eğitim sayfamızda mozaikleme ve eğitim teknikleri hakkında daha fazlasını keşfedin.
Why should I use Ultralytics YOLO11 for object detection tasks?
Ultralytics YOLO11 provides state-of-the-art real-time object detection capabilities, including features like oriented bounding boxes (OBB), instance segmentation, and a highly versatile training pipeline. It's suitable for various applications and offers pretrained models for efficient fine-tuning. Explore further about the advantages and usage in the Ultralytics YOLO11 documentation.