Objects365 Veri Kümesi
Objects365 veri kümesi, vahşi doğadaki çeşitli nesnelere odaklanarak nesne algılama araştırmalarını teşvik etmek için tasarlanmış büyük ölçekli, yüksek kaliteli bir veri kümesidir. Megvii araştırmacılarından oluşan bir ekip tarafından oluşturulan veri kümesi, 365 nesne kategorisini kapsayan kapsamlı bir açıklamalı sınırlayıcı kutu seti ile çok çeşitli yüksek çözünürlüklü görüntüler sunar.
Temel Özellikler
- Objects365, 2 milyon görüntü ve 30 milyondan fazla sınırlayıcı kutu ile 365 nesne kategorisi içerir.
- Veri kümesi, çeşitli senaryolardaki farklı nesneleri içeriyor ve nesne algılama görevleri için zengin ve zorlu bir ölçüt sağlıyor.
- Ek açıklamalar nesneler için sınırlayıcı kutular içerir, bu da onu nesne algılama modellerini eğitmek ve değerlendirmek için uygun hale getirir.
- Objects365 önceden eğitilmiş modelleri, ImageNet önceden eğitilmiş modellerinden önemli ölçüde daha iyi performans göstererek çeşitli görevlerde daha iyi genelleme sağlar.
Veri Kümesi Yapısı
Objects365 veri kümesi, ilgili ek açıklamalarla birlikte tek bir görüntü kümesi halinde düzenlenmiştir:
- Görüntüler: Veri kümesi, her biri 365 kategoride çeşitli nesneler içeren 2 milyon yüksek çözünürlüklü görüntü içermektedir.
- Ek açıklamalar: Görüntüler, nesne algılama görevleri için kapsamlı temel doğruluk bilgileri sağlayan 30 milyondan fazla sınırlayıcı kutu ile açıklanmıştır.
Uygulamalar
Objects365 veri kümesi, nesne algılama görevlerinde derin öğrenme modellerini eğitmek ve değerlendirmek için yaygın olarak kullanılmaktadır. Veri setinin çok çeşitli nesne kategorileri ve yüksek kaliteli ek açıklamaları, onu bilgisayarla görme alanındaki araştırmacılar ve uygulayıcılar için değerli bir kaynak haline getirmektedir.
Veri Kümesi YAML
Veri kümesi yapılandırmasını tanımlamak için bir YAML (Yet Another Markup Language) dosyası kullanılır. Veri kümesinin yolları, sınıfları ve diğer ilgili bilgiler hakkında bilgi içerir. Objects365 Veri Kümesi için Objects365.yaml
dosyası şu adreste tutulur https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Objects365.yaml.
ultralytics/cfg/datasets/Objects365.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dining Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hami melon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meatball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywhn
import numpy as np
from pathlib import Path
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)
Kullanım
Bir YOLO11n modelini Objects365 veri kümesinde 640 görüntü boyutuyla 100 epok için eğitmek için aşağıdaki kod parçacıklarını kullanabilirsiniz. Kullanılabilir bağımsız değişkenlerin kapsamlı bir listesi için Model Eğitimi sayfasına bakın.
Tren Örneği
Örnek Veriler ve Açıklamalar
Objects365 veri kümesi, nesne algılama görevleri için zengin bir bağlam sağlayan 365 kategoriden nesneler içeren çeşitli yüksek çözünürlüklü görüntüler içerir. İşte veri kümesindeki görüntülerden bazı örnekler:
- Objects365: Bu görüntü, nesnelerin sınırlayıcı kutularla açıklandığı bir nesne algılama örneğini göstermektedir. Veri kümesi, bu görev için modellerin geliştirilmesini kolaylaştırmak üzere geniş bir görüntü yelpazesi sunmaktadır.
Örnek, Objects365 veri kümesindeki verilerin çeşitliliğini ve karmaşıklığını sergilemekte ve bilgisayarla görme uygulamaları için doğru nesne algılamanın önemini vurgulamaktadır.
Atıflar ve Teşekkür
Objects365 veri setini araştırma veya geliştirme çalışmalarınızda kullanırsanız, lütfen aşağıdaki makaleye atıfta bulunun:
@inproceedings{shao2019objects365,
title={Objects365: A Large-scale, High-quality Dataset for Object Detection},
author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Li, Jing and Zhang, Xiangyu and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={8425--8434},
year={2019}
}
Objects365 veri setini bilgisayarla görme araştırma topluluğu için değerli bir kaynak olarak yaratan ve sürdüren araştırmacı ekibine teşekkür ederiz. Objects365 veri seti ve yaratıcıları hakkında daha fazla bilgi için Objects365 veri seti web sitesini ziyaret edin.
SSS
Objects365 veri kümesi ne için kullanılır?
Objects365 veri kümesi, makine öğrenimi ve bilgisayarla görmede nesne algılama görevleri için tasarlanmıştır. Bu veri seti, 365 kategoride 2 milyon açıklamalı görüntü ve 30 milyon sınırlayıcı kutu içeren büyük ölçekli, yüksek kaliteli bir veri seti sağlar. Böylesine çeşitli bir veri setinden yararlanmak, nesne algılama modellerinin performansını ve genellemesini artırmaya yardımcı olarak bu alandaki araştırma ve geliştirme için paha biçilmez hale getirir.
Objects365 veri kümesi üzerinde bir YOLO11 modelini nasıl eğitebilirim?
Objects365 veri kümesini kullanarak 640 görüntü boyutunda 100 epokluk bir YOLO11n modeli eğitmek için aşağıdaki talimatları izleyin:
Tren Örneği
Mevcut argümanların kapsamlı bir listesi için Eğitim sayfasına bakın.
Nesne algılama projelerim için neden Objects365 veri setini kullanmalıyım?
Objects365 veri kümesi, nesne algılama görevleri için çeşitli avantajlar sunar:
- Çeşitlilik: 365 kategoriyi kapsayan çeşitli senaryolardaki nesneleri içeren 2 milyon görüntü içerir.
- Yüksek Kaliteli Ek Açıklamalar: 30 milyondan fazla sınırlayıcı kutu, kapsamlı zemin doğruluğu verileri sağlar.
- Performans: Objects365 üzerinde önceden eğitilen modeller, ImageNet gibi veri kümeleri üzerinde eğitilenlerden önemli ölçüde daha iyi performans göstererek daha iyi genelleme sağlar.
Objects365 veri kümesi için YAML yapılandırma dosyasını nerede bulabilirim?
Objects365 veri kümesi için YAML yapılandırma dosyası Objects365.yaml adresinde mevcuttur. Bu dosya, eğitim ortamınızı ayarlamak için çok önemli olan veri kümesi yolları ve sınıf etiketleri gibi temel bilgileri içerir.
Objects365'in veri kümesi yapısı nesne algılama modellemesini nasıl geliştiriyor?
Objects365 veri kümesi, 2 milyon yüksek çözünürlüklü görüntü ve 30 milyondan fazla sınırlayıcı kutudan oluşan kapsamlı ek açıklamalarla düzenlenmiştir. Bu yapı, nesne algılamada derin öğrenme modellerini eğitmek için çok çeşitli nesneler ve senaryolar sunan sağlam bir veri kümesi sağlar. Bu çeşitlilik ve hacim, daha doğru ve gerçek dünya uygulamalarına iyi genelleme yapabilen modellerin geliştirilmesine yardımcı olur. Veri kümesi yapısı hakkında daha fazla ayrıntı için Veri Kümesi YAML bölümüne bakın.