İçeriğe geç

COCO128-Seg Veri Seti

Giriş

Ultralytics COCO128-Seg, COCO train 2017 setinin ilk 128 görüntüsünden oluşan küçük ama çok yönlü bir örnek segmentasyon veri setidir. Bu veri kümesi, segmentasyon modellerini test etmek ve hata ayıklamak veya yeni tespit yaklaşımlarını denemek için idealdir. 128 görüntü ile kolayca yönetilebilecek kadar küçüktür, ancak hatalar için eğitim boru hatlarını test etmek ve daha büyük veri kümelerini eğitmeden önce bir akıl sağlığı kontrolü görevi görecek kadar çeşitlidir.

Bu veri kümesi, Ultralytics HUB ve YOLO11 ile kullanılmak üzere tasarlanmıştır.

Veri Seti YAML

Veri kümesi yapılandırmasını tanımlamak için bir YAML (Yet Another Markup Language) dosyası kullanılır. Veri kümesinin yolları, sınıfları ve diğer ilgili bilgiler hakkında bilgi içerir. COCO128-Seg veri kümesi söz konusu olduğunda coco128-seg.yaml dosyası şu adreste tutulur: https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128-seg.yaml.

ultralytics.yaml

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128-seg ← downloads here (7 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: coco128-seg # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip

Kullanım

Bir YOLO11n-seg modelini COCO128-Seg veri kümesinde 640 görüntü boyutuyla 100 epok için eğitmek için aşağıdaki kod parçacıklarını kullanabilirsiniz. Kullanılabilir bağımsız değişkenlerin kapsamlı bir listesi için Model Eğitimi sayfasına bakın.

Eğitim Örneği

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco128-seg.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=coco128-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

Örnek Görüntüler ve Açıklamalar

COCO128-Seg veri kümesinden bazı görüntü örnekleri ve bunlara karşılık gelen ek açıklamalar aşağıda verilmiştir:

Veri kümesi örnek görüntüsü

  • Mozaiklenmiş Görüntü: Bu görüntü, mozaiklenmiş veri seti görüntülerinden oluşan bir eğitim grubunu göstermektedir. Mozaikleme, her eğitim grubundaki nesnelerin ve sahnelerin çeşitliliğini artırmak için birden çok görüntüyü tek bir görüntüde birleştiren eğitim sırasında kullanılan bir tekniktir. Bu, modelin farklı nesne boyutlarına, en boy oranlarına ve bağlamlara genelleme yeteneğini geliştirmeye yardımcı olur.

Bu örnek, COCO128-Seg veri kümesindeki görüntülerin çeşitliliğini ve karmaşıklığını ve eğitim sürecinde mozaikleme kullanmanın faydalarını göstermektedir.

Alıntılar ve Teşekkürler

Araştırma veya geliştirme çalışmalarınızda COCO veri setini kullanırsanız, lütfen aşağıdaki makaleye atıfta bulunun:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Bilgisayarla görü topluluğu için bu değerli kaynağı oluşturdukları ve sürdürdükleri için COCO Konsorsiyumu'na teşekkür etmek isteriz. COCO veri kümesi ve yaratıcıları hakkında daha fazla bilgi için COCO veri kümesi web sitesini ziyaret edin.

SSS

COCO128-Seg veri seti nedir ve Ultralytics YOLO11'de nasıl kullanılır?

COCO128-Seg veri kümesi, COCO train 2017 setindeki ilk 128 görüntüden oluşan Ultralytics'in kompakt bir örnek segmentasyon veri kümesidir. Bu veri seti, segmentasyon modellerini test etmek ve hata ayıklamak veya yeni algılama yöntemlerini denemek için özel olarak tasarlanmıştır. Özellikle Ultralytics ile kullanışlıdır YOLO11 ve daha büyük veri kümelerine ölçeklendirmeden önce hızlı yineleme ve boru hattı hata kontrolü için HUB. Ayrıntılı kullanım için Model Eğitimi sayfasına bakın.

COCO128-Seg veri kümesini kullanarak bir YOLO11n-seg modelini nasıl eğitebilirim?

Bir YOLO11n-seg modelini COCO128-Seg veri kümesi üzerinde 640 görüntü boyutuyla 100 epok boyunca eğitmek için Python veya CLI komutlarını kullanabilirsiniz. İşte hızlı bir örnek:

Eğitim Örneği

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # Load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco128-seg.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=coco128-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

Mevcut argümanların ve yapılandırma seçeneklerinin kapsamlı bir açıklaması için Eğitim belgelerine bakabilirsiniz.

COCO128-Seg veri seti model geliştirme ve hata ayıklama için neden önemlidir?

COCO128-Seg veri seti, 128 görüntü ile yönetilebilirlik ve çeşitliliğin dengeli bir kombinasyonunu sunarak segmentasyon modellerini hızlı bir şekilde test etmek ve hata ayıklamak veya yeni algılama tekniklerini denemek için mükemmeldir. Orta büyüklükteki boyutu, hızlı eğitim yinelemelerine olanak tanırken, daha büyük veri kümelerine ölçeklendirmeden önce eğitim işlem hatlarını doğrulamak için yeterli çeşitlilik sağlar. Ultralytics segmentasyon veri kümesi kılavuzunda desteklenen veri kümesi formatları hakkında daha fazla bilgi edinin.

COCO128-Seg veri kümesi için YAML yapılandırma dosyasını nerede bulabilirim?

COCO128-Seg veri kümesi için YAML yapılandırma dosyası Ultralytics deposunda mevcuttur. Dosyaya doğrudan ultralytics adresinden erişebilirsiniz. YAML dosyası, model eğitimi ve doğrulaması için gereken veri kümesi yolları, sınıflar ve yapılandırma ayarları hakkında temel bilgileri içerir.

COCO128-Seg veri kümesi ile eğitim sırasında mozaikleme kullanmanın bazı faydaları nelerdir?

Eğitim sırasında mozaikleme kullanmak, her eğitim partisindeki nesnelerin ve sahnelerin çeşitliliğini ve çeşitliliğini artırmaya yardımcı olur. Bu teknik, birden fazla görüntüyü tek bir kompozit görüntüde birleştirerek modelin sahne içindeki farklı nesne boyutlarına, en boy oranlarına ve bağlamlara genelleme yeteneğini geliştirir. Mozaikleme, özellikle COCO128-Seg gibi orta büyüklükteki veri kümeleriyle çalışırken bir modelin sağlamlığını ve doğruluğunu artırmak için faydalıdır. Mozaiklenmiş görüntülerin bir örneği için Örnek Görüntüler ve Açıklamalar bölümüne bakın.



📅 0 gün önce oluşturuldu ✏️ 0 gün önce güncellendi

Yorumlar