Bỏ để qua phần nội dung

Ultralytics API suy luận HUB

Các Ultralytics HUB Inference API cho phép bạn chạy suy luận thông qua REST API của chúng tôi mà không cần cài đặt và thiết lập Ultralytics YOLO môi trường tại địa phương.

Ultralytics Ảnh chụp màn hình HUB của tab Triển khai bên trong trang Mô hình với mũi tên trỏ đến Ultralytics Thẻ API suy luận


Xem: Ultralytics Hướng dẫn về API suy luận HUB

Python

Để truy cập Ultralytics API suy luận HUB sử dụng Python, sử dụng mã sau:

import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())

Ghi

Thay thế MODEL_ID với ID mô hình mong muốn, API_KEY với khóa API thực của bạn, và path/to/image.jpg với đường dẫn đến hình ảnh bạn muốn chạy suy luận.

uốn

Để truy cập Ultralytics API suy luận HUB sử dụng cURL, sử dụng mã sau:

curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"

Ghi

Thay thế MODEL_ID với ID mô hình mong muốn, API_KEY với khóa API thực của bạn, và path/to/image.jpg với đường dẫn đến hình ảnh bạn muốn chạy suy luận.

Lập luận

Xem bảng dưới đây để biết danh sách đầy đủ các đối số suy luận có sẵn.

Lý lẽ Mặc định Kiểu Sự miêu tả
image image Image file to be used for inference.
url str URL of the image if not passing a file.
size 640 int Size of the input image, valid range is 32 - 1280 pixels.
confidence 0.25 float Confidence threshold for predictions, valid range 0.01 - 1.0.
iou 0.45 float Intersection over Union (IoU) threshold, valid range 0.0 - 0.95.

Phản ứng

Các Ultralytics API suy luận HUB trả về phản hồi JSON.

Phân loại

Mô hình phân loại

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-cls.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92
    }
  ]
}

Detection

Mô hình phát hiện

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      width: 0.4893378019332886,
      height: 0.7437513470649719,
      xcenter: 0.4434437155723572,
      ycenter: 0.5198975801467896
    }
  ]
}

OBB

Mô hình OBB

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-obb.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      obb: [
        0.669310450553894,
        0.6247171759605408,
        0.9847468137741089,
        ...
      ]
    }
  ]
}

Phân đoạn

Mô hình phân khúc

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-seg.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      segment: [0.44140625, 0.15625, 0.439453125, ...]
    }
  ]
}

Tư thế

Mô hình tạo dáng

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-pose.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      keypoints: [
        0.5290805697441101,
        0.20698919892311096,
        1.0,
        0.5263055562973022,
        0.19584226608276367,
        1.0,
        0.5094948410987854,
        0.19120082259178162,
        1.0,
        ...
      ]
    }
  ]
}


Created 2024-01-23, Updated 2024-06-10
Authors: glenn-jocher (7), sergiuwaxmann (2), RizwanMunawar (1), priytosh-tripathi (1)

Ý kiến