跳至内容

参考资料 ultralytics/nn/modules/block.py

备注

该文件可从https://github.com/ultralytics/ultralytics/blob/main/ ultralytics/nn/modules/block .py 获取。如果您发现问题,请通过提交 Pull Request🛠️ 帮助修复。谢谢🙏!



ultralytics.nn.modules.block.DFL

垒球 Module

分布焦距损耗(DFL)积分模块。

建议在全身病灶丧失 https://ieeexplore.ieee.org/document/9792391

源代码 ultralytics/nn/modules/block.py
class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).

    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, c, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)

__init__(c1=16)

用给定的输入通道数初始化卷积层。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1=16):
    """Initialize a convolutional layer with a given number of input channels."""
    super().__init__()
    self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
    x = torch.arange(c1, dtype=torch.float)
    self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
    self.c1 = c1

forward(x)

在输入tensor 'x' 上应用转换层,并返回tensor 。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a transformer layer on input tensor 'x' and returns a tensor."""
    b, c, a = x.shape  # batch, channels, anchors
    return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)



ultralytics.nn.modules.block.Proto

垒球 Module

YOLOv8 用于分割模型的掩码 Proto 模块。

源代码 ultralytics/nn/modules/block.py
class Proto(nn.Module):
    """YOLOv8 mask Proto module for segmentation models."""

    def __init__(self, c1, c_=256, c2=32):
        """
        Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

        Input arguments are ch_in, number of protos, number of masks.
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)

    def forward(self, x):
        """Performs a forward pass through layers using an upsampled input image."""
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))

__init__(c1, c_=256, c2=32)

使用指定数量的原语和掩码初始化YOLOv8 mask Proto 模块。

输入参数包括 ch_in、protos 数量、掩码数量。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c_=256, c2=32):
    """
    Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

    Input arguments are ch_in, number of protos, number of masks.
    """
    super().__init__()
    self.cv1 = Conv(c1, c_, k=3)
    self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
    self.cv2 = Conv(c_, c_, k=3)
    self.cv3 = Conv(c_, c2)

forward(x)

使用上采样输入图像执行层前传。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Performs a forward pass through layers using an upsampled input image."""
    return self.cv3(self.cv2(self.upsample(self.cv1(x))))



ultralytics.nn.modules.block.HGStem

垒球 Module

带有 5 个卷积和一个 maxpool2d 的 PPHGNetV2 的 StemBlock。

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

源代码 ultralytics/nn/modules/block.py
class HGStem(nn.Module):
    """
    StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2):
        """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
        super().__init__()
        self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
        self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
        self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
        self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
        self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
        self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        x = self.stem1(x)
        x = F.pad(x, [0, 1, 0, 1])
        x2 = self.stem2a(x)
        x2 = F.pad(x2, [0, 1, 0, 1])
        x2 = self.stem2b(x2)
        x1 = self.pool(x)
        x = torch.cat([x1, x2], dim=1)
        x = self.stem3(x)
        x = self.stem4(x)
        return x

__init__(c1, cm, c2)

使用输入/输出通道和指定的内核大小初始化 SPP 层,以实现最大池化。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2):
    """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
    super().__init__()
    self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
    self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
    self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
    self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
    self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
    self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

forward(x)

PPHGNetV2 主干层的前向通道。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    x = self.stem1(x)
    x = F.pad(x, [0, 1, 0, 1])
    x2 = self.stem2a(x)
    x2 = F.pad(x2, [0, 1, 0, 1])
    x2 = self.stem2b(x2)
    x1 = self.pool(x)
    x = torch.cat([x1, x2], dim=1)
    x = self.stem3(x)
    x = self.stem4(x)
    return x



ultralytics.nn.modules.block.HGBlock

垒球 Module

带有 2 个卷积和 LightConv 的 PPHGNetV2 的 HG_Block。

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

源代码 ultralytics/nn/modules/block.py
class HGBlock(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.ec(self.sc(torch.cat(y, 1)))
        return y + x if self.add else y

__init__(c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU())

使用指定的输入和输出通道,以 1 次卷积初始化 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
    """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
    super().__init__()
    block = LightConv if lightconv else Conv
    self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
    self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
    self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
    self.add = shortcut and c1 == c2

forward(x)

PPHGNetV2 主干层的前向通道。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    y = [x]
    y.extend(m(y[-1]) for m in self.m)
    y = self.ec(self.sc(torch.cat(y, 1)))
    return y + x if self.add else y



ultralytics.nn.modules.block.SPP

垒球 Module

空间金字塔汇集(SPP)层 https://arxiv.org/abs/1406.4729。

源代码 ultralytics/nn/modules/block.py
class SPP(nn.Module):
    """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""

    def __init__(self, c1, c2, k=(5, 9, 13)):
        """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        """Forward pass of the SPP layer, performing spatial pyramid pooling."""
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

__init__(c1, c2, k=(5, 9, 13))

用输入/输出通道和池核大小初始化 SPP 层。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=(5, 9, 13)):
    """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
    self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

forward(x)

SPP 层的前向传递,执行空间金字塔汇集。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of the SPP layer, performing spatial pyramid pooling."""
    x = self.cv1(x)
    return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))



ultralytics.nn.modules.block.SPPF

垒球 Module

空间金字塔池化--快速(SPPF)层,YOLOv5 ,作者 Glenn Jocher。

源代码 ultralytics/nn/modules/block.py
class SPPF(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""

    def __init__(self, c1, c2, k=5):
        """
        Initializes the SPPF layer with given input/output channels and kernel size.

        This module is equivalent to SPP(k=(5, 9, 13)).
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        """Forward pass through Ghost Convolution block."""
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

__init__(c1, c2, k=5)

使用给定的输入/输出通道和内核大小初始化 SPPF 层。

该模块等同于 SPP(k=(5, 9, 13))。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=5):
    """
    Initializes the SPPF layer with given input/output channels and kernel size.

    This module is equivalent to SPP(k=(5, 9, 13)).
    """
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * 4, c2, 1, 1)
    self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

forward(x)

前向通过幽灵卷积块。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through Ghost Convolution block."""
    x = self.cv1(x)
    y1 = self.m(x)
    y2 = self.m(y1)
    return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))



ultralytics.nn.modules.block.C1

垒球 Module

1 次卷积的 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
class C1(nn.Module):
    """CSP Bottleneck with 1 convolution."""

    def __init__(self, c1, c2, n=1):
        """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

    def forward(self, x):
        """Applies cross-convolutions to input in the C3 module."""
        y = self.cv1(x)
        return self.m(y) + y

__init__(c1, c2, n=1)

使用参数 ch_in、ch_out、number 初始化 CSP Bottleneck,配置 1 次卷积。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1):
    """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

forward(x)

对 C3 模块中的输入进行交叉旋转。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies cross-convolutions to input in the C3 module."""
    y = self.cv1(x)
    return self.m(y) + y



ultralytics.nn.modules.block.C2

垒球 Module

有 2 个卷积的 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
class C2(nn.Module):
    """CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
        groups, expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
        # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
        self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        a, b = self.cv1(x).chunk(2, 1)
        return self.cv2(torch.cat((self.m(a), b), 1))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

使用参数 ch_in、ch_out、number、快捷方式初始化 CSP Bottleneck 的 2 个卷积模块、 组、扩展。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
    groups, expansion.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
    # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
    self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

forward(x)

前向通过 CSP 瓶颈,有 2 个卷积。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    a, b = self.cv1(x).chunk(2, 1)
    return self.cv2(torch.cat((self.m(a), b), 1))



ultralytics.nn.modules.block.C2f

垒球 Module

用 2 次卷积更快地实现 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

__init__(c1, c2, n=1, shortcut=False, g=1, e=0.5)

用两个卷积初始化 CSP 瓶颈层,参数为 ch_in、ch_out、编号、快捷方式、组、 扩展。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
    expansion.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward(x)

向前穿过 C2f 层。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))

forward_split(x)

使用 split() 代替 chunk() 向前传递。

源代码 ultralytics/nn/modules/block.py
def forward_split(self, x):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))



ultralytics.nn.modules.block.C3

垒球 Module

有 3 个卷积的 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

使用给定的通道、编号、快捷方式、分组和扩展值初始化 CSP Bottleneck。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

forward(x)

前向通过 CSP 瓶颈,有 2 个卷积。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))



ultralytics.nn.modules.block.C3x

垒球 C3

C3 模块带交叉旋转。

源代码 ultralytics/nn/modules/block.py
class C3x(C3):
    """C3 module with cross-convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3TR instance and set default parameters."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.c_ = int(c2 * e)
        self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

初始化 C3TR 实例并设置默认参数。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3TR instance and set default parameters."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.c_ = int(c2 * e)
    self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))



ultralytics.nn.modules.block.RepC3

垒球 Module

代表 C3。

源代码 ultralytics/nn/modules/block.py
class RepC3(nn.Module):
    """Rep C3."""

    def __init__(self, c1, c2, n=3, e=1.0):
        """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
        self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

    def forward(self, x):
        """Forward pass of RT-DETR neck layer."""
        return self.cv3(self.m(self.cv1(x)) + self.cv2(x))

__init__(c1, c2, n=3, e=1.0)

使用输入通道、输出通道和编号对 CSP Bottleneck 进行一次卷积初始化。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=3, e=1.0):
    """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c2, 1, 1)
    self.cv2 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
    self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

forward(x)

RT-DETR 。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of RT-DETR neck layer."""
    return self.cv3(self.m(self.cv1(x)) + self.cv2(x))



ultralytics.nn.modules.block.C3TR

垒球 C3

使用 TransformerBlock() 的 C3 模块。

源代码 ultralytics/nn/modules/block.py
class C3TR(C3):
    """C3 module with TransformerBlock()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3Ghost module with GhostBottleneck()."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

使用 GhostBottleneck() 初始化 C3Ghost 模块。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3Ghost module with GhostBottleneck()."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)
    self.m = TransformerBlock(c_, c_, 4, n)



ultralytics.nn.modules.block.C3Ghost

垒球 C3

使用 GhostBottleneck() 的 C3 模块。

源代码 ultralytics/nn/modules/block.py
class C3Ghost(C3):
    """C3 module with GhostBottleneck()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

初始化 "SPP "模块,为空间金字塔汇集法提供各种汇集规模。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))



ultralytics.nn.modules.block.GhostBottleneck

垒球 Module

幽灵瓶颈 https://github.com/huawei-noah/ghostnet。

源代码 ultralytics/nn/modules/block.py
class GhostBottleneck(nn.Module):
    """Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""

    def __init__(self, c1, c2, k=3, s=1):
        """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(
            GhostConv(c1, c_, 1, 1),  # pw
            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
            GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
        )
        self.shortcut = (
            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
        )

    def forward(self, x):
        """Applies skip connection and concatenation to input tensor."""
        return self.conv(x) + self.shortcut(x)

__init__(c1, c2, k=3, s=1)

使用参数 ch_in、ch_out、kernel 和 stride 初始化 GhostBottleneck 模块。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=3, s=1):
    """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
    super().__init__()
    c_ = c2 // 2
    self.conv = nn.Sequential(
        GhostConv(c1, c_, 1, 1),  # pw
        DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
        GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
    )
    self.shortcut = (
        nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
    )

forward(x)

对输入tensor 应用跳转连接和连接。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies skip connection and concatenation to input tensor."""
    return self.conv(x) + self.shortcut(x)



ultralytics.nn.modules.block.Bottleneck

垒球 Module

标准瓶颈。

源代码 ultralytics/nn/modules/block.py
class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

__init__(c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5)

使用给定的输入/输出通道、快捷选项、组、内核和扩展名初始化瓶颈模块。 扩展。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
    """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
    expansion.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, k[0], 1)
    self.cv2 = Conv(c_, c2, k[1], 1, g=g)
    self.add = shortcut and c1 == c2

forward(x)

forward() "将YOLO FPN 应用于输入数据。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """'forward()' applies the YOLO FPN to input data."""
    return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))



ultralytics.nn.modules.block.BottleneckCSP

垒球 Module

CSP 瓶颈 https://github.com/WongKinYiu/CrossStagePartialNetworks。

源代码 ultralytics/nn/modules/block.py
class BottleneckCSP(nn.Module):
    """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Applies a CSP bottleneck with 3 convolutions."""
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

__init__(c1, c2, n=1, shortcut=True, g=1, e=0.5)

为 ch_in、ch_out、编号、快捷方式、分组和扩展参数初始化 CSP Bottleneck。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
    self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
    self.cv4 = Conv(2 * c_, c2, 1, 1)
    self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
    self.act = nn.SiLU()
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

forward(x)

应用具有 3 个卷积的 CSP 瓶颈。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a CSP bottleneck with 3 convolutions."""
    y1 = self.cv3(self.m(self.cv1(x)))
    y2 = self.cv2(x)
    return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))



ultralytics.nn.modules.block.ResNetBlock

垒球 Module

具有标准卷积层的 ResNet 块。

源代码 ultralytics/nn/modules/block.py
class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

__init__(c1, c2, s=1, e=4)

使用给定参数初始化卷积。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, e=4):
    """Initialize convolution with given parameters."""
    super().__init__()
    c3 = e * c2
    self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
    self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
    self.cv3 = Conv(c2, c3, k=1, act=False)
    self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

forward(x)

前向通过 ResNet 区块。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet block."""
    return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))



ultralytics.nn.modules.block.ResNetLayer

垒球 Module

具有多个 ResNet 块的 ResNet 层。

源代码 ultralytics/nn/modules/block.py
class ResNetLayer(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

__init__(c1, c2, s=1, is_first=False, n=1, e=4)

初始化给定参数的 ResNetLayer。

源代码 ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
    """Initializes the ResNetLayer given arguments."""
    super().__init__()
    self.is_first = is_first

    if self.is_first:
        self.layer = nn.Sequential(
            Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
    else:
        blocks = [ResNetBlock(c1, c2, s, e=e)]
        blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
        self.layer = nn.Sequential(*blocks)

forward(x)

前向通过 ResNet 层。

源代码 ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet layer."""
    return self.layer(x)





创建于 2023-11-12,更新于 2023-12-08
作者:glenn-jocher(4)