跳至内容

定向边框对象检测

定向物体检测比物体检测更进一步,它引入了一个额外的角度来更准确地定位图像中的物体。

定向物体检测器的输出结果是一组旋转的边界框,这些边界框精确地包围了图像中的物体,同时还包括每个边界框的类标签和置信度分数。当你需要识别场景中感兴趣的物体,但又不需要知道物体的具体位置或确切形状时,物体检测是一个不错的选择。

提示

YOLOv8 OBB 模型使用 -obb 后缀,即 yolov8n-obb.pt 并对 DOTAv1.



观看: 使用Ultralytics YOLOv8 定向边框 (YOLOv8-OBB) 进行物体检测

视觉样本

使用 OBB 进行船舶探测 使用 OBB 进行车辆检测
使用 OBB 进行船舶探测 使用 OBB 进行车辆检测

机型

YOLOv8 这里显示的是在DOTAv1数据集上预训练的 OBB 模型。

首次使用时,模型会自动从最新的Ultralytics 版本下载。

模型 尺寸
(像素)
mAPtest
50
速度
CPUONNX
(ms)
速度
A100 TensorRT
(毫秒)
params
(M)
FLOPs
(B)
YOLOv8n-obb 1024 78.0 204.77 3.57 3.1 23.3
YOLOv8s-obb 1024 79.5 424.88 4.07 11.4 76.3
YOLOv8m-obb 1024 80.5 763.48 7.61 26.4 208.6
YOLOv8l-obb 1024 80.7 1278.42 11.83 44.5 433.8
YOLOv8x-obb 1024 81.36 1759.10 13.23 69.5 676.7
  • mAPtest 值为单一模型多尺度 DOTAv1 测试 数据集。
    复制方式 yolo val obb data=DOTAv1.yaml device=0 split=test 并将合并结果提交给 DOTA 评估.
  • 速度 对 DOTAv1 val 图像进行平均。 亚马逊 EC2 P4d 实例
    复制方式 yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu

火车

列车YOLOv8n-obb on the dota8.yaml 数据集,在图像大小为 640 的条件下进行 100 个历时。有关可用参数的完整列表,请参阅 配置 page.

示例

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-obb.yaml')  # build a new model from YAML
model = YOLO('yolov8n-obb.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n-obb.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='dota8.yaml', epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo obb train data=dota8.yaml model=yolov8n-obb.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640

数据集格式

OBB 数据集格式详见《数据集指南》。

瓦尔

在 DOTA8 数据集上验证训练有素的YOLOv8n-obb 模型的准确性。无需传递参数,因为 model 保留培训 data 和参数作为模型属性。

示例

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-obb.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val(data='dota8.yaml')  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95(B)
metrics.box.map50  # map50(B)
metrics.box.map75  # map75(B)
metrics.box.maps   # a list contains map50-95(B) of each category
yolo obb val model=yolov8n-obb.pt data=dota8.yaml  # val official model
yolo obb val model=path/to/best.pt data=path/to/data.yaml  # val custom model

预测

使用训练有素的YOLOv8n-obb 模型对图像进行预测。

示例

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-obb.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
yolo obb predict model=yolov8n-obb.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

查看全文 predict 模式的详细信息,请参见 预测 page.

出口

将YOLOv8n-obb 模型导出为不同格式,如ONNX,CoreML 等。

示例

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-obb.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n-obb.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

YOLOv8-obb 导出格式如下表所示。您可以直接对导出的模型进行预测或验证,即 yolo predict model=yolov8n-obb.onnx.导出完成后会显示模型的使用示例。

格式 format 论据 模型 元数据 论据
PyTorch - yolov8n-obb.pt -
TorchScript torchscript yolov8n-obb.torchscript imgsz, optimize
ONNX onnx yolov8n-obb.onnx imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n-obb_openvino_model/ imgsz, half, int8
TensorRT engine yolov8n-obb.engine imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n-obb.mlpackage imgsz, half, int8, nms
TF SavedModel saved_model yolov8n-obb_saved_model/ imgsz, keras
TF GraphDef pb yolov8n-obb.pb imgsz
TF 轻型 tflite yolov8n-obb.tflite imgsz, half, int8
TF 边缘TPU edgetpu yolov8n-obb_edgetpu.tflite imgsz
TF.js tfjs yolov8n-obb_web_model/ imgsz, half, int8
PaddlePaddle paddle yolov8n-obb_paddle_model/ imgsz
ncnn ncnn yolov8n-obb_ncnn_model/ imgsz, half

查看全文 export 中的详细信息 出口 page.



创建于 2024-01-05,更新于 2024-02-03
作者:glenn-jocher(10),Laughing-q(3),AyushExel(1)

评论