مجموعة بيانات Argoverse
مجموعة بيانات Argoverse عبارة عن مجموعة من البيانات المصممة لدعم البحث في مهام القيادة الذاتية ، مثل تتبع 3D والتنبؤ بالحركة وتقدير عمق الاستريو. توفر مجموعة البيانات ، التي طورتها Argo الذكاء الاصطناعي ، مجموعة واسعة من بيانات المستشعر عالية الجودة ، بما في ذلك الصور عالية الدقة وسحب نقطة LiDAR وبيانات الخرائط.
ملاحظه
مجموعة بيانات Argoverse *.zip
تمت إزالة الملف المطلوب للتدريب من Amazon S3 بعد إغلاق Argo الذكاء الاصطناعي بواسطة Ford ، لكننا جعلناه متاحا للتنزيل اليدوي على Google القيادة.
الميزات الرئيسية
- يحتوي Argoverse على أكثر من 290 ألف مسار كائن ثلاثي الأبعاد و 5 ملايين مثيل كائن عبر 1،263 مشهدا متميزا.
- تتضمن مجموعة البيانات صور كاميرا عالية الدقة وسحب نقطة LiDAR وخرائط عالية الدقة مشروحة بشكل غني.
- تتضمن التعليقات التوضيحية مربعات إحاطة 3D للكائنات ومسارات الكائنات ومعلومات المسار.
- يوفر Argoverse مجموعات فرعية متعددة لمهام مختلفة ، مثل تتبع 3D والتنبؤ بالحركة وتقدير عمق الاستريو.
هيكل مجموعة البيانات
يتم تنظيم مجموعة بيانات Argoverse في ثلاث مجموعات فرعية رئيسية:
- Argoverse 3D Tracking: تحتوي هذه المجموعة الفرعية على 113 مشهدا مع أكثر من 290 ألف مسار كائن ثلاثي الأبعاد ، مع التركيز على مهام تتبع الكائنات ثلاثية الأبعاد. يتضمن سحب نقطة LiDAR وصور الكاميرا ومعلومات معايرة المستشعر.
- Argoverse Motion Predicting: تتكون هذه المجموعة الفرعية من 324 ألف مسار مركبة تم جمعها من 60 ساعة من بيانات القيادة ، وهي مناسبة لمهام التنبؤ بالحركة.
- تقدير عمق الاستريو Argoverse: تم تصميم هذه المجموعة الفرعية لمهام تقدير عمق الاستريو وتتضمن أكثر من 10 آلاف زوج من صور الاستريو مع سحب نقطة LiDAR المقابلة لتقدير عمق الحقيقة الأرضية.
التطبيقات
The Argoverse dataset is widely used for training and evaluating deep learning models in autonomous driving tasks such as 3D object tracking, motion forecasting, and stereo depth estimation. The dataset's diverse set of sensor data, object annotations, and map information make it a valuable resource for researchers and practitioners in the field of autonomous driving.
مجموعة البيانات YAML
يتم استخدام ملف YAML (لغة ترميز أخرى) لتحديد تكوين مجموعة البيانات. يحتوي على معلومات حول مسارات مجموعة البيانات والفئات والمعلومات الأخرى ذات الصلة. بالنسبة لحالة مجموعة بيانات Argoverse ، فإن ملف Argoverse.yaml
يتم الاحتفاظ بالملف في https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Argoverse.yaml.
ultralytics/cfg/datasets/Argoverse.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Argoverse ← downloads here (31.5 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: bus
5: truck
6: traffic_light
7: stop_sign
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
from tqdm import tqdm
from ultralytics.utils.downloads import download
from pathlib import Path
def argoverse2yolo(set):
labels = {}
a = json.load(open(set, "rb"))
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = f'{img_name[:-3]}txt'
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920.0 # offset and scale
y_center = (y_center + height / 2) / 1200.0 # offset and scale
width /= 1920.0 # scale
height /= 1200.0 # scale
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
if not img_dir.exists():
img_dir.mkdir(parents=True, exist_ok=True)
k = str(img_dir / img_label_name)
if k not in labels:
labels[k] = []
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for k in labels:
with open(k, "w") as f:
f.writelines(labels[k])
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
dir = Path(yaml['path']) # dataset root dir
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
# download(urls, dir=dir)
# Convert
annotations_dir = 'Argoverse-HD/annotations/'
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
for d in "train.json", "val.json":
argoverse2yolo(dir / annotations_dir / d) # convert Argoverse annotations to YOLO labels
استخدام
To train a YOLO11n model on the Argoverse dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
مثال القطار
عينة من البيانات والتعليقات التوضيحية
تحتوي مجموعة بيانات Argoverse على مجموعة متنوعة من بيانات المستشعرات ، بما في ذلك صور الكاميرا وسحب نقطة LiDAR ومعلومات الخريطة عالية الدقة ، مما يوفر سياقا غنيا لمهام القيادة الذاتية. في ما يلي بعض الأمثلة على البيانات من مجموعة البيانات، إلى جانب التعليقات التوضيحية المقابلة لها:
- Argoverse 3D Tracking: توضح هذه الصورة مثالا على تتبع الكائنات ثلاثية الأبعاد ، حيث يتم تعليق الكائنات بمربعات محيطة ثلاثية الأبعاد. توفر مجموعة البيانات سحب نقطة LiDAR وصور الكاميرا لتسهيل تطوير نماذج لهذه المهمة.
يعرض المثال تنوع وتعقيد البيانات في مجموعة بيانات Argoverse ويسلط الضوء على أهمية بيانات المستشعر عالية الجودة لمهام القيادة الذاتية.
الاستشهادات والشكر
إذا كنت تستخدم مجموعة بيانات Argoverse في أعمال البحث أو التطوير الخاصة بك، فيرجى الاستشهاد بالورقة التالية:
@inproceedings{chang2019argoverse,
title={Argoverse: 3D Tracking and Forecasting with Rich Maps},
author={Chang, Ming-Fang and Lambert, John and Sangkloy, Patsorn and Singh, Jagjeet and Bak, Slawomir and Hartnett, Andrew and Wang, Dequan and Carr, Peter and Lucey, Simon and Ramanan, Deva and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8748--8757},
year={2019}
}
نود أن نعرب عن تقديرنا لشركة Argo الذكاء الاصطناعي لإنشاء مجموعة بيانات Argoverse والحفاظ عليها كمورد قيم لمجتمع أبحاث القيادة الذاتية. لمزيد من المعلومات حول مجموعة بيانات Argoverse ومنشئيها، تفضل بزيارة موقع ويب مجموعة بيانات Argoverse.
الأسئلة المتداولة
ما هي مجموعة بيانات Argoverse وميزاتها الرئيسية؟
تدعم مجموعة بيانات Argoverse، التي طورتها Argo AI، أبحاث القيادة الذاتية. وهي تتضمن أكثر من 290 ألف مسار ثلاثي الأبعاد مُصنَّف على أنه مسار كائنات ثلاثية الأبعاد و5 ملايين حالة كائن عبر 1263 مشهداً متميزاً. توفر مجموعة البيانات صوراً عالية الدقة للكاميرا وسحب نقطية من الليدار وخرائط عالية الدقة مشروحة، مما يجعلها ذات قيمة لمهام مثل التتبع ثلاثي الأبعاد والتنبؤ بالحركة وتقدير العمق المجسم.
كيف يمكنني تدريب نموذج Ultralytics YOLO باستخدام مجموعة بيانات Argoverse؟
To train a YOLO11 model with the Argoverse dataset, use the provided YAML configuration file and the following code:
مثال القطار
للحصول على شرح مفصل للوسائط، راجع صفحة تدريب النموذج.
ما هي أنواع البيانات والشروح المتوفرة في مجموعة بيانات Argoverse؟
تشتمل مجموعة بيانات Argoverse على أنواع مختلفة من بيانات المستشعرات مثل صور الكاميرا عالية الدقة وسحب نقاط LiDAR وبيانات الخرائط عالية الدقة. تتضمن التعليقات التوضيحية المربعات المحددة ثلاثية الأبعاد، ومسارات الأجسام، ومعلومات المسار. تعد هذه الشروح الشاملة ضرورية للتدريب الدقيق للنموذج في مهام مثل تتبع الأجسام ثلاثية الأبعاد والتنبؤ بالحركة وتقدير العمق المجسم.
كيف يتم تنظيم مجموعة بيانات Argoverse؟
تنقسم مجموعة البيانات إلى ثلاث مجموعات فرعية رئيسية:
- تتبع الأجسام ثلاثية الأبعاد من Argoverse: يحتوي على 113 مشهدًا يحتوي على أكثر من 290 ألف مسار ثلاثي الأبعاد مُصنَّف للأجسام، مع التركيز على مهام تتبع الأجسام ثلاثية الأبعاد. يتضمن سحب نقاط ليدار وصور الكاميرا ومعلومات معايرة المستشعر.
- التنبؤ بحركة أرجوفيرس: تتكون من 324 ألف مسار مركبة تم جمعها من 60 ساعة من بيانات القيادة، وهي مناسبة لمهام التنبؤ بالحركة.
- تقدير العمق المجسّم المجسّم: يتضمن أكثر من 10 آلاف زوج من الصور المجسمة مع سحب نقاط LiDAR المقابلة لتقدير العمق الحقيقي للأرض.
أين يمكنني تنزيل مجموعة بيانات Argoverse الآن بعد أن تمت إزالتها من Amazon S3؟
مجموعة بيانات Argoverse *.zip
المتوفر سابقًا على Amazon S3، يمكن الآن تنزيل الملف يدويًا من Google القيادة.
ما هو ملف تكوين YAML المستخدم مع مجموعة بيانات Argoverse؟
يحتوي ملف YAML على مسارات مجموعة البيانات والفئات والمعلومات الأساسية الأخرى. بالنسبة لمجموعة بيانات Argoverse، ملف التكوين, Argoverse.yaml
يمكن العثور عليها على الرابط التالي: Argoverse.yaml.
للمزيد من المعلومات حول تكوينات YAML، راجع دليل مجموعات البيانات الخاص بنا.