انتقل إلى المحتوى

Roboflow مجموعة بيانات تجزئة الكراك الكوني

ال Roboflowتبرز مجموعة بيانات تجزئة الكراك كمورد شامل مصمم خصيصا للأفراد المشاركين في دراسات النقل والسلامة العامة. إنه مفيد بنفس القدر لأولئك الذين يعملون على تطوير نماذج السيارات ذاتية القيادة أو ببساطة استكشاف تطبيقات رؤية الكمبيوتر لأغراض ترفيهية.

تضم مجموعة البيانات هذه ما مجموعه 4029 صورة ثابتة تم التقاطها من سيناريوهات متنوعة للطرق والجدران ، وتبرز كأصل قيم للمهام المتعلقة بتجزئة الشقوق. سواء كنت تتعمق في تعقيدات أبحاث النقل أو تسعى إلى تعزيز دقة طرازات سيارتك ذاتية القيادة ، توفر مجموعة البيانات هذه مجموعة غنية ومتنوعة من الصور لدعم مساعيك.

هيكل مجموعة البيانات

يتم توضيح تقسيم البيانات داخل مجموعة بيانات تجزئة الكراك على النحو التالي:

  • مجموعة التدريب: تتكون من 3717 صورة مع التعليقات التوضيحية المقابلة.
  • مجموعة الاختبار: تضم 112 صورة مع التعليقات التوضيحية الخاصة بها.
  • مجموعة التحقق من الصحة: تتضمن 200 صورة مع التعليقات التوضيحية المقابلة لها.

التطبيقات

يجد تجزئة الشقوق تطبيقات عملية في صيانة البنية التحتية ، مما يساعد في تحديد وتقييم الأضرار الهيكلية. كما أنه يلعب دورا حاسما في تعزيز السلامة على الطرق من خلال تمكين الأنظمة الآلية من اكتشاف ومعالجة شقوق الأرصفة للإصلاحات في الوقت المناسب.

مجموعة البيانات YAML

يتم استخدام ملف YAML (لغة ترميز أخرى) لتحديد تكوين مجموعة البيانات ، بما في ذلك تفاصيل حول المسارات والفئات والمعلومات الأخرى ذات الصلة. على وجه التحديد ، بالنسبة لمجموعة بيانات تجزئة الكراك ، فإن crack-seg.yaml تتم إدارة الملف ويمكن الوصول إليه في https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/crack-seg.yaml.

ultralytics/cfg/datasets/crack-seg.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── crack-seg  ← downloads here (91.2 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/crack-seg # dataset root dir
train: train/images # train images (relative to 'path') 3717 images
val: valid/images # val images (relative to 'path') 112 images
test: test/images # test images (relative to 'path') 200 images

# Classes
names:
  0: crack

# Download script/URL (optional)
download: https://ultralytics.com/assets/crack-seg.zip

استخدام

للتدريب Ultralytics YOLOv8n نموذج على مجموعة بيانات تجزئة الكراك ل 100 حقبة بحجم صورة 640 ، يمكنك استخدام مقتطفات التعليمات البرمجية التالية. للحصول على قائمة شاملة بالوسيطات المتاحة، ارجع إلى صفحة نموذج التدريب .

مثال القطار

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data='crack-seg.yaml', epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=crack-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640

عينة من البيانات والتعليقات التوضيحية

تشتمل مجموعة بيانات Crack Segmentation على مجموعة متنوعة من الصور ومقاطع الفيديو التي تم التقاطها من وجهات نظر متعددة. فيما يلي أمثلة للبيانات من مجموعة البيانات ، مصحوبة بالتعليقات التوضيحية الخاصة بكل منها:

صورة عينة مجموعة البيانات

  • تقدم هذه الصورة مثالا على تجزئة كائن الصورة، والتي تتميز بمربعات محيطة مشروحة مع أقنعة تحدد الكائنات المحددة. تتضمن مجموعة البيانات مجموعة متنوعة من الصور التي تم التقاطها في مواقع وبيئات وكثافات مختلفة ، مما يجعلها موردا شاملا لتطوير النماذج المصممة لهذه المهمة بالذات.

  • يؤكد المثال على التنوع والتعقيد الموجود في مجموعة بيانات تجزئة الكراك ، مع التأكيد على الدور الحاسم للبيانات عالية الجودة في مهام رؤية الكمبيوتر.

الاستشهادات والشكر

إذا قمت بدمج مجموعة بيانات تجزئة الكراك في مساعيك البحثية أو التطويرية ، فيرجى الرجوع إلى الورقة التالية:

@misc{ crack-bphdr_dataset,
    title = { crack Dataset },
    type = { Open Source Dataset },
    author = { University },
    howpublished = { \url{ https://universe.roboflow.com/university-bswxt/crack-bphdr } },
    url = { https://universe.roboflow.com/university-bswxt/crack-bphdr },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2022 },
    month = { dec },
    note = { visited on 2024-01-23 },
}

نود أن نعترف Roboflow فريق لإنشاء وصيانة مجموعة بيانات تجزئة الكراك كمورد قيم للسلامة على الطرق والمشاريع البحثية. لمزيد من المعلومات حول مجموعة بيانات تجزئة الكراك ومنشئيها ، قم بزيارة صفحة مجموعة بيانات تجزئة الكراك.



تم النشر في 2024-01-25, اخر تحديث 2024-02-08
المؤلفون: chr043416@gmail.com (1) ، جلين جوشر (1)

التعليقات