انتقل إلى المحتوى

مشروع نظام إنذار أمني باستخدام Ultralytics YOLOv8

نظام إنذار أمني

مشروع نظام الإنذار الأمني باستخدام Ultralytics YOLOv8 يدمج قدرات رؤية الكمبيوتر المتقدمة لتعزيز التدابير الأمنية. YOLOv8، تم تطويره بواسطة Ultralytics، يوفر الكشف عن الأجسام في الوقت الحقيقي، مما يسمح للنظام بتحديد التهديدات الأمنية المحتملة والاستجابة لها على الفور. يقدم هذا المشروع العديد من المزايا:

  • الكشف في الوقت الحقيقي: YOLOv8، تمكن كفاءة نظام الإنذار الأمني من اكتشاف الحوادث الأمنية والاستجابة لها في الوقت الفعلي ، مما يقلل من وقت الاستجابة.
  • دقة: YOLOv8 معروف بدقته في اكتشاف الأشياء وتقليل الإيجابيات الخاطئة وتعزيز موثوقية نظام الإنذار الأمني.
  • قدرات التكامل: يمكن دمج المشروع بسلاسة مع البنية التحتية الأمنية الحالية ، مما يوفر طبقة مطورة من المراقبة الذكية.



شاهد: مشروع نظام إنذار أمني مع Ultralytics YOLOv8 كشف الكائن

رمز

استيراد المكتبات

import torch
import numpy as np
import cv2
from time import time
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

إعداد معلمات الرسالة

ملاحظه

إنشاء كلمة مرور التطبيق ضروري

  • انتقل إلى App Password Generator ، وقم بتعيين اسم تطبيق مثل "مشروع أمان" ، واحصل على كلمة مرور مكونة من 16 رقما. انسخ كلمة المرور هذه والصقها في حقل كلمة المرور المخصص وفقا للتعليمات.
password = ""
from_email = ""  # must match the email used to generate the password
to_email = ""  # receiver email

إنشاء الخادم والمصادقة عليه

server = smtplib.SMTP('smtp.gmail.com: 587')
server.starttls()
server.login(from_email, password)

وظيفة إرسال البريد الإلكتروني

def send_email(to_email, from_email, object_detected=1):
    message = MIMEMultipart()
    message['From'] = from_email
    message['To'] = to_email
    message['Subject'] = "Security Alert"
    # Add in the message body
    message_body = f'ALERT - {object_detected} objects has been detected!!'

    message.attach(MIMEText(message_body, 'plain'))
    server.sendmail(from_email, to_email, message.as_string())

الكشف عن الكائن وتنبيه المرسل

class ObjectDetection:
    def __init__(self, capture_index):
        # default parameters
        self.capture_index = capture_index
        self.email_sent = False

        # model information
        self.model = YOLO("yolov8n.pt")

        # visual information
        self.annotator = None
        self.start_time = 0
        self.end_time = 0

        # device information
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'

    def predict(self, im0):
        results = self.model(im0)
        return results

    def display_fps(self, im0):
        self.end_time = time()
        fps = 1 / np.round(self.end_time - self.start_time, 2)
        text = f'FPS: {int(fps)}'
        text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
        gap = 10
        cv2.rectangle(im0, (20 - gap, 70 - text_size[1] - gap), (20 + text_size[0] + gap, 70 + gap), (255, 255, 255), -1)
        cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)

    def plot_bboxes(self, results, im0):
        class_ids = []
        self.annotator = Annotator(im0, 3, results[0].names)
        boxes = results[0].boxes.xyxy.cpu()
        clss = results[0].boxes.cls.cpu().tolist()
        names = results[0].names
        for box, cls in zip(boxes, clss):
            class_ids.append(cls)
            self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
        return im0, class_ids

    def __call__(self):
        cap = cv2.VideoCapture(self.capture_index)
        assert cap.isOpened()
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
        frame_count = 0
        while True:
            self.start_time = time()
            ret, im0 = cap.read()
            assert ret
            results = self.predict(im0)
            im0, class_ids = self.plot_bboxes(results, im0)

            if len(class_ids) > 0:  # Only send email If not sent before
                if not self.email_sent:
                    send_email(to_email, from_email, len(class_ids))
                    self.email_sent = True
            else:
                self.email_sent = False

            self.display_fps(im0)
            cv2.imshow('YOLOv8 Detection', im0)
            frame_count += 1
            if cv2.waitKey(5) & 0xFF == 27:
                break
        cap.release()
        cv2.destroyAllWindows()
        server.quit()

استدعاء فئة الكشف عن الكائنات وتشغيل الاستدلال

detector = ObjectDetection(capture_index=0)
detector()

هذا هو! عند تنفيذ التعليمات البرمجية ، ستتلقى إشعارا واحدا على بريدك الإلكتروني إذا تم اكتشاف أي كائن. يتم إرسال الإشعار على الفور ، وليس بشكل متكرر. ومع ذلك ، لا تتردد في تخصيص الكود ليناسب متطلبات مشروعك.

عينة البريد الإلكتروني المستلمة

عينة البريد الإلكتروني المستلمة



تم إنشاؤه في 2023-12-02, اخر تحديث 2024-02-03
المؤلفون: جلين جوشر (2) ، رضوان منور (1)

التعليقات