انتقل إلى المحتوى

تقدير الوضع

أمثلة تقدير الطرح

تقدير الوضع هو مهمة تتضمن تحديد موقع نقاط معينة في الصورة ، وعادة ما يشار إليها باسم النقاط الرئيسية. يمكن أن تمثل النقاط الرئيسية أجزاء مختلفة من الكائن مثل المفاصل أو المعالم أو الميزات المميزة الأخرى. عادة ما يتم تمثيل مواقع النقاط الرئيسية كمجموعة من 2D [x, y] أو 3D [x, y, visible] احداثيات.

ناتج نموذج تقدير الوضع هو مجموعة من النقاط التي تمثل النقاط الرئيسية على كائن في الصورة ، عادة جنبا إلى جنب مع درجات الثقة لكل نقطة. يعد تقدير الوضع اختيارا جيدا عندما تحتاج إلى تحديد أجزاء معينة من كائن ما في مشهد ما ، وموقعها بالنسبة لبعضها البعض.


شاهد: تشكل تقدير مع Ultralytics YOLOv8.

شاهد: تشكل تقدير مع Ultralytics محور.

بقشيش

YOLOv8 تشكل تستخدم النماذج -pose لاحقة ، أي yolov8n-pose.pt. يتم تدريب هذه النماذج على النقاط الرئيسية ل COCO مجموعة بيانات ومناسبة لمجموعة متنوعة من مهام تقدير الوضع.

نماذج

YOLOv8 يتم عرض نماذج Pose المدربة مسبقا هنا. يتم تدريب نماذج الكشف والمقطع والوضع مسبقا على مجموعة بيانات COCO ، بينما يتم تدريب نماذج التصنيف مسبقا على مجموعة بيانات ImageNet .

يتم تنزيل الموديلات تلقائيا من الأحدث Ultralytics حرر عند الاستخدام الأول.

نموذج حجم
(بكسل)
خريطةتشكل
50-95
خريطةتشكل
50
سرعة
وحده المعالجه المركزيه ONNX
(مللي ثانية)
سرعة
أ 100 TensorRT
(مللي ثانية)
المعلمات
(م)
يتخبط
(ب)
YOLOv8n-تشكل 640 50.4 80.1 131.8 1.18 3.3 9.2
YOLOv8s-تشكل 640 60.0 86.2 233.2 1.42 11.6 30.2
YOLOv8m-تشكل 640 65.0 88.8 456.3 2.00 26.4 81.0
YOLOv8l-تشكل 640 67.6 90.0 784.5 2.59 44.4 168.6
YOLOv8x-تشكل 640 69.2 90.2 1607.1 3.73 69.4 263.2
YOLOv8x-بوز-ص6 1280 71.6 91.2 4088.7 10.04 99.1 1066.4
  • mAPval القيم هي لمقياس أحادي الطراز على نقاط كوكو الرئيسية val2017 مجموعة البيانات.
    إعادة إنتاج بواسطة yolo val pose data=coco-pose.yaml device=0
  • سرعة تم حساب المتوسط على صور COCO val باستخدام أمازون EC2 P4d مثيل.
    إعادة إنتاج بواسطة yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu

قطار

تدريب أ YOLOv8-pose model على مجموعة بيانات COCO128-pos.

مثل

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.yaml")  # build a new model from YAML
model = YOLO("yolov8n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n-pose.yaml").load("yolov8n-pose.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640

تنسيق مجموعة البيانات

YOLO يمكن العثور على تنسيق مجموعة بيانات التشكيل بالتفصيل في دليل مجموعة البيانات. لتحويل مجموعة البيانات الحالية من تنسيقات أخرى (مثل COCO وغيرها) إلى YOLO ، يرجى استخدام JSON2YOLO الأداة بواسطة Ultralytics.

فال

التحقق من صحة المدربين YOLOv8n-تشكل دقة النموذج على مجموعة بيانات COCO128-pos. لا حاجة لتمرير أي حجة على أنها model تحتفظ بتدريبها data والحجج كسمات نموذجية.

مثل

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo pose val model=yolov8n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

تنبأ

استخدم مدربا YOLOv8n-تشكل نموذجا لتشغيل التنبؤات على الصور.

مثل

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

شاهد التفاصيل predict تفاصيل الوضع في تنبأ صفحة.

تصدير

تصدير أ YOLOv8n طرح نموذج بتنسيق مختلف مثل ONNX, CoreMLالخ.

مثل

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolov8n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

ترد تنسيقات التصدير المتاحة YOLOv8-pose في الجدول أدناه. يمكنك التصدير إلى أي تنسيق باستخدام format الحجة ، أي format='onnx' أو format='engine'. يمكنك التنبؤ أو التحقق من صحة النماذج المصدرة مباشرة، أي yolo predict model=yolov8n-pose.onnx. يتم عرض أمثلة الاستخدام للطراز الخاص بك بعد اكتمال التصدير.

تنسيق format جدال نموذج البيانات الوصفية الحجج
PyTorch - yolov8n-pose.pt -
TorchScript torchscript yolov8n-pose.torchscript imgsz, optimize, batch
ONNX onnx yolov8n-pose.onnx imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolov8n-pose_openvino_model/ imgsz, half, int8, batch
TensorRT engine yolov8n-pose.engine imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolov8n-pose.mlpackage imgsz, half, int8, nms, batch
TF SavedModel saved_model yolov8n-pose_saved_model/ imgsz, keras, int8, batch
TF GraphDef pb yolov8n-pose.pb imgsz, batch
TF لايت tflite yolov8n-pose.tflite imgsz, half, int8, batch
TF حافة TPU edgetpu yolov8n-pose_edgetpu.tflite imgsz
TF.شبيبه tfjs yolov8n-pose_web_model/ imgsz, half, int8, batch
PaddlePaddle paddle yolov8n-pose_paddle_model/ imgsz, batch
NCNN ncnn yolov8n-pose_ncnn_model/ imgsz, half, batch

شاهد التفاصيل export التفاصيل في تصدير صفحة.



Created 2023-11-12, Updated 2024-06-10
Authors: glenn-jocher (18), Burhan-Q (4), RizwanMunawar (1), AyushExel (1), Laughing-q (1)

التعليقات