Ultralytics YOLO Foire aux questions (FAQ)
Cette section de la FAQ répond aux questions et problèmes courants que les utilisateurs peuvent rencontrer lorsqu'ils travaillent avec des référentiels. Ultralytics YOLO les référentiels.
FAQ
Qu'est-ce que Ultralytics et qu'est-ce qu'il offre ?
Ultralytics is a computer vision AI company specializing in state-of-the-art object detection and image segmentation models, with a focus on the YOLO (You Only Look Once) family. Their offerings include:
- Open-source implementations of YOLO11 and YOLO11
- Un large éventail de modèles pré-entraînés pour diverses tâches de vision par ordinateur.
- Un ensemble complet dePython pour une intégration transparente des modèles YOLO dans les projets.
- Outils polyvalents pour la formation, les tests et le déploiement de modèles.
- Une documentation complète et une communauté d'entraide
Comment installer le paquet Ultralytics ?
L'installation du paquetage Ultralytics est simple Ă l'aide de pip :
Pour la dernière version de développement, installe-toi directement depuis le dépôt GitHub :
Tu trouveras des instructions d'installation détaillées dans le guide de démarrage rapide.
Quelle est la configuration requise pour faire fonctionner les modèles Ultralytics ?
Exigences minimales :
- Python 3.7+
- PyTorch 1.7+
- CUDAcompatible GPU (pour l'accélération de GPU )
Configuration recommandée :
- Python 3.8+
- PyTorch 1.10+
- NVIDIA GPU avec CUDA 11.2+
- 8 GO + DE RAM
- 50 Go+ d’espace disque libre (pour le stockage des jeux de données et l’entraînement des modèles)
Pour le dépannage des problèmes courants, visite la page YOLO Common Issues.
How can I train a custom YOLO11 model on my own dataset?
To train a custom YOLO11 model:
- Préparez votre jeu de données dans YOLO (images et fichiers txt d’étiquettes correspondants).
- Créez un fichier YAML décrivant la structure et les classes de votre jeu de données.
- Utilisez les éléments suivants Python Code pour commencer l’entraînement :
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="path/to/your/data.yaml", epochs=100, imgsz=640)
Pour un guide plus approfondi, comprenant la préparation des données et les options de formation avancée, reporte-toi au guide de formation complet.
Quels sont les modèles préformés disponibles sur Ultralytics?
Ultralytics offers a diverse range of pretrained YOLO11 models for various tasks:
- Object Detection: YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x
- Instance Segmentation: YOLO11n-seg, YOLO11s-seg, YOLO11m-seg, YOLO11l-seg, YOLO11x-seg
- Classification: YOLO11n-cls, YOLO11s-cls, YOLO11m-cls, YOLO11l-cls, YOLO11x-cls
These models vary in size and complexity, offering different trade-offs between speed and accuracy. Explore the full range of pretrained models to find the best fit for your project.
Comment puis-je effectuer une inférence à l'aide d'un modèle Ultralytics formé ?
Pour effectuer une inférence avec un modèle entraîné :
from ultralytics import YOLO
# Load a model
model = YOLO("path/to/your/model.pt")
# Perform inference
results = model("path/to/image.jpg")
# Process results
for r in results:
print(r.boxes) # print bbox predictions
print(r.masks) # print mask predictions
print(r.probs) # print class probabilities
Pour les options d'inférence avancées, y compris le traitement par lots et l'inférence vidéo, consulte le guide détaillé des prédictions.
Les modèles Ultralytics peuvent-ils être déployés sur des appareils périphériques ou dans des environnements de production ?
Absolument ! Les modèles Ultralytics sont conçus pour un déploiement polyvalent sur différentes plateformes :
- Appareils périphériques : Optimise l'inférence sur les appareils tels que NVIDIA Jetson ou Intel Neural Compute Stick en utilisant TensorRT, ONNX, ou OpenVINO.
- Mobile : Déploie sur les appareils Android ou iOS en convertissant les modèles en TFLite ou Core ML.
- Cloud: Leverage frameworks like TensorFlow Serving or PyTorch Serve for scalable cloud deployments.
- Web : Implémente l'inférence dans le navigateur en utilisant ONNX.js ou TensorFlow.js.
Ultralytics propose des fonctions d'exportation pour convertir les modèles dans différents formats en vue de leur déploiement. Explore la vaste gamme d'options de déploiement pour trouver la meilleure solution pour ton cas d'utilisation.
What's the difference between YOLOv8 and YOLO11?
Les principales distinctions sont les suivantes :
- Architecture: YOLO11 features an improved backbone and head design for enhanced performance.
- Performance: YOLO11 generally offers superior accuracy and speed compared to YOLOv8.
- Tasks: YOLO11 natively supports object detection, instance segmentation, and classification in a unified framework.
- Codebase: YOLO11 is implemented with a more modular and extensible architecture, facilitating easier customization and extension.
- Training: YOLO11 incorporates advanced training techniques like multi-dataset training and hyperparameter evolution for improved results.
For an in-depth comparison of features and performance metrics, visit the YOLO comparison page.
Comment puis-je contribuer au projet open-source Ultralytics ?
Contribuer à Ultralytics est un excellent moyen d'améliorer le projet et d'élargir tes compétences. Voici comment tu peux participer :
- Forkez le Ultralytics sur GitHub.
- Créez une nouvelle branche pour votre fonctionnalité ou correction de bogue.
- Apportez vos modifications et assurez-vous que tous les tests réussissent.
- Envoyez une demande de tirage avec une description claire de vos modifications.
- Participer au processus de révision du code.
Tu peux aussi contribuer en signalant des bogues, en suggérant des fonctionnalités ou en améliorant la documentation. Pour des directives détaillées et des bonnes pratiques, consulte le guide de contribution.
Comment installer le paquet Ultralytics dans Python?
L'installation du paquet Ultralytics dans Python est simple. Utilise pip en exécutant la commande suivante dans ton terminal ou dans l'invite de commande :
Pour la version de développement de pointe, installe-toi directement depuis le dépôt GitHub :
Pour les instructions d'installation spécifiques à l'environnement et les conseils de dépannage, consulte le guide de démarrage rapide complet.
Quelles sont les principales caractéristiques de Ultralytics YOLO ?
Ultralytics YOLO se targue d'un riche ensemble de fonctions pour la détection avancée d'objets et la segmentation d'images :
- Détection en temps réel : Détecte et classe efficacement les objets dans des scénarios en temps réel.
- Modèles pré-entraînés : Accède à une variété de modèles pré-entraînés qui équilibrent la vitesse et la précision pour différents cas d'utilisation.
- Formation personnalisée : Affine facilement les modèles sur des ensembles de données personnalisés grâce au pipeline de formation flexible.
- Options de déploiement étendues : Exporte les modèles vers divers formats tels que TensorRT, ONNX, et CoreML pour les déployer sur différentes plates-formes.
- Documentation complète : Bénéficie d'une documentation complète et d'une communauté de soutien pour te guider dans ton parcours de vision par ordinateur.
Explore la page des modèlesYOLO pour un examen approfondi des capacités et des architectures des différentes versions de YOLO .
Comment puis-je améliorer les performances de mon modèle YOLO ?
L'amélioration des performances de ton modèle YOLO peut être obtenue grâce à plusieurs techniques :
- Hyperparameter Tuning: Experiment with different hyperparameters using the Hyperparameter Tuning Guide to optimize model performance.
- Data Augmentation: Implement techniques like flip, scale, rotate, and color adjustments to enhance your training dataset and improve model generalization.
- Transfer Learning: Leverage pre-trained models and fine-tune them on your specific dataset using the Train YOLO11 guide.
- Exporter vers des formats efficaces : Convertis ton modèle dans des formats optimisés comme TensorRT ou ONNX pour une inférence plus rapide en utilisant le guide d'exportation.
- Analyse comparative : Utilise le mode repère pour mesurer et améliorer systématiquement la vitesse et la précision des inférences.
Puis-je déployer les modèles Ultralytics YOLO sur les appareils mobiles et périphériques ?
Oui, les modèles Ultralytics YOLO sont conçus pour un déploiement polyvalent, y compris pour les appareils mobiles et périphériques :
- Mobile : Convertis les modèles en TFLite ou CoreML pour une intégration transparente dans les applications Android ou iOS . Reporte-toi au guide d'intégration TFLite et au guide d'intégrationCoreML pour obtenir des instructions spécifiques à chaque plateforme.
- Périphériques de périphérie : Optimise l'inférence sur des appareils tels que NVIDIA Jetson ou d'autres matériels de périphérie en utilisant TensorRT ou ONNX. Le guide d'intégration Edge TPU fournit des étapes détaillées pour le déploiement de la périphérie.
Pour un aperçu complet des stratégies de déploiement sur les différentes plateformes, consulte le guide des options de déploiement.
Comment puis-je effectuer une inférence à l'aide d'un modèle Ultralytics YOLO formé ?
L'inférence à l'aide d'un modèle Ultralytics YOLO formé est simple :
- Charge le modèle :
- Exécute l'inférence :
results = model("path/to/image.jpg")
for r in results:
print(r.boxes) # print bounding box predictions
print(r.masks) # print mask predictions
print(r.probs) # print class probabilities
Pour les techniques d'inférence avancées, y compris le traitement par lots, l'inférence vidéo et le prétraitement personnalisé, reporte-toi au guide de prédiction détaillé.
OĂą puis-je trouver des exemples et des tutoriels pour utiliser Ultralytics?
Ultralytics fournit une foule de ressources pour t'aider à démarrer et à maîtriser leurs outils :
- 📚 Documentation officielle: Des guides complets, des références d'API et des meilleures pratiques.
- 💻 Dépôt GitHub: Code source, scripts d'exemple et contributions de la communauté.
- ✍️ Ultralytics blog: Articles approfondis, cas d'utilisation et aperçus techniques.
- 💬 Forums de la communauté: Connecte-toi avec d'autres utilisateurs, pose des questions et partage tes expériences.
- 🎥 Chaîne YouTube: Tutoriels vidéo, démos et webinaires sur divers sujets Ultralytics .
Ces ressources fournissent des exemples de code, des cas d'utilisation réels et des guides étape par étape pour diverses tâches à l'aide des modèles Ultralytics .
Si tu as besoin d'aide supplémentaire, n'hésite pas à consulter la documentation de Ultralytics ou à contacter la communauté par le biais de GitHub Issues ou du forum de discussion officiel.