Set di dati COCO
The COCO (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking computer vision models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
Guarda: Ultralytics Panoramica del set di dati COCO
Modelli preaddestrati COCO
Modello | dimensione (pixel) |
mAPval 50-95 |
Velocità CPU ONNX (ms) |
Speed T4 TensorRT10 (ms) |
params (M) |
FLOP (B) |
---|---|---|---|---|---|---|
YOLO11n | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
YOLO11s | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
YOLO11m | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
YOLO11l | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
YOLO11x | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
Caratteristiche principali
- COCO contiene 330K immagini, di cui 200K con annotazioni per il rilevamento degli oggetti, la segmentazione e le didascalie.
- Il set di dati comprende 80 categorie di oggetti, tra cui oggetti comuni come automobili, biciclette e animali, oltre a categorie più specifiche come ombrelli, borse e attrezzature sportive.
- Le annotazioni comprendono riquadri di delimitazione degli oggetti, maschere di segmentazione e didascalie per ogni immagine.
- COCO provides standardized evaluation metrics like mean Average Precision (mAP) for object detection, and mean Average Recall (mAR) for segmentation tasks, making it suitable for comparing model performance.
Struttura del set di dati
Il set di dati COCO è suddiviso in tre sottoinsiemi:
- Train2017: Questo sottoinsieme contiene 118K immagini per l'addestramento dei modelli di rilevamento, segmentazione e didascalia degli oggetti.
- Val2017: Questo sottoinsieme contiene 5K immagini utilizzate per la convalida durante l'addestramento del modello.
- Test2017: Questo sottoinsieme è composto da 20K immagini utilizzate per testare e confrontare i modelli addestrati. Le annotazioni di verità a terra per questo sottoinsieme non sono disponibili pubblicamente e i risultati vengono inviati al server di valutazione COCO per la valutazione delle prestazioni.
Applicazioni
The COCO dataset is widely used for training and evaluating deep learning models in object detection (such as YOLO, Faster R-CNN, and SSD), instance segmentation (such as Mask R-CNN), and keypoint detection (such as OpenPose). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
Set di dati YAML
Un file YAML (Yet Another Markup Language) viene utilizzato per definire la configurazione del dataset. Contiene informazioni sui percorsi del dataset, sulle classi e altre informazioni rilevanti. Nel caso del set di dati COCO, il file coco.yaml
Il file viene mantenuto all'indirizzo https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml.
ultralytics/cfg/datasets/coco.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
segments = True # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
Utilizzo
To train a YOLO11n model on the COCO dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
Esempio di treno
Immagini di esempio e annotazioni
Il set di dati COCO contiene un insieme eterogeneo di immagini con varie categorie di oggetti e scene complesse. Ecco alcuni esempi di immagini tratte dal dataset, con le relative annotazioni:
- Immagine a mosaico: Questa immagine mostra un lotto di formazione composto da immagini del dataset mosaicate. Il mosaico è una tecnica utilizzata durante l'addestramento che combina più immagini in un'unica immagine per aumentare la varietà di oggetti e scene all'interno di ogni gruppo di addestramento. Questo aiuta a migliorare la capacità del modello di generalizzarsi a oggetti di dimensioni, rapporti di aspetto e contesti diversi.
L'esempio mostra la varietà e la complessità delle immagini del set di dati COCO e i vantaggi dell'utilizzo della mosaicatura durante il processo di formazione.
Citazioni e ringraziamenti
Se utilizzi il set di dati COCO nel tuo lavoro di ricerca o sviluppo, cita il seguente documento:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Desideriamo ringraziare il Consorzio COCO per aver creato e mantenuto questa preziosa risorsa per la comunità della computer vision. Per maggiori informazioni sul dataset COCO e sui suoi creatori, visita il sito web del dataset COCO.
DOMANDE FREQUENTI
Cos'è il dataset COCO e perché è importante per la computer vision?
The COCO dataset (Common Objects in Context) is a large-scale dataset used for object detection, segmentation, and captioning. It contains 330K images with detailed annotations for 80 object categories, making it essential for benchmarking and training computer vision models. Researchers use COCO due to its diverse categories and standardized evaluation metrics like mean Average Precision (mAP).
Come posso addestrare un modello YOLO utilizzando il dataset COCO?
To train a YOLO11 model using the COCO dataset, you can use the following code snippets:
Esempio di treno
Per maggiori dettagli sugli argomenti disponibili, consulta la pagina Formazione.
Quali sono le caratteristiche principali del set di dati COCO?
Il set di dati COCO comprende:
- 330K immagini, di cui 200K annotate per il rilevamento degli oggetti, la segmentazione e la didascalia.
- 80 categorie di oggetti che vanno da quelli più comuni come auto e animali a quelli più specifici come borse e attrezzature sportive.
- Metriche di valutazione standardizzate per il rilevamento degli oggetti (mAP) e la segmentazione (mean Average Recall, mAR).
- Tecnica di mosaico nei lotti di formazione per migliorare la generalizzazione del modello in diversi contesti e dimensioni di oggetti.
Where can I find pretrained YOLO11 models trained on the COCO dataset?
Pretrained YOLO11 models on the COCO dataset can be downloaded from the links provided in the documentation. Examples include:
Questi modelli variano per dimensioni, mAP e velocità di inferenza, offrendo opzioni per soddisfare diversi requisiti di prestazioni e risorse.
Come è strutturato il set di dati COCO e come posso utilizzarlo?
Il set di dati COCO è suddiviso in tre sottoinsiemi:
- Train2017: 118K immagini per la formazione.
- Val2017: 5K immagini per la convalida durante la formazione.
- Test2017: 20K immagini per il benchmarking dei modelli addestrati. I risultati devono essere inviati al server di valutazione COCO per la valutazione delle prestazioni.
Il file di configurazione YAML del dataset è disponibile all'indirizzo coco.yaml, che definisce percorsi, classi e dettagli del dataset.