Set di dati COCO8-Pose
Introduzione
Ultralytics COCO8-Pose is a small, but versatile pose detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
This dataset is intended for use with Ultralytics HUB and YOLO11.
Set di dati YAML
Un file YAML (Yet Another Markup Language) viene utilizzato per definire la configurazione del dataset. Contiene informazioni sui percorsi del dataset, sulle classi e altre informazioni rilevanti. Nel caso del set di dati COCO8-Pose, il file coco8-pose.yaml
Il file viene mantenuto all'indirizzo https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-pose.yaml.
ultralytics/cfg/datasets/coco8-pose.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-pose ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes
names:
0: person
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
Utilizzo
To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
Esempio di treno
Immagini di esempio e annotazioni
Ecco alcuni esempi di immagini tratte dal dataset COCO8-Pose, con le relative annotazioni:
- Immagine a mosaico: Questa immagine mostra un lotto di formazione composto da immagini del dataset mosaicate. Il mosaico è una tecnica utilizzata durante l'addestramento che combina più immagini in un'unica immagine per aumentare la varietà di oggetti e scene all'interno di ogni gruppo di addestramento. Questo aiuta a migliorare la capacità del modello di generalizzarsi a oggetti di dimensioni, rapporti di aspetto e contesti diversi.
L'esempio mostra la varietà e la complessità delle immagini del dataset COCO8-Pose e i vantaggi dell'utilizzo della mosaicatura durante il processo di formazione.
Citazioni e ringraziamenti
Se utilizzi il set di dati COCO nel tuo lavoro di ricerca o sviluppo, cita il seguente documento:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.
DOMANDE FREQUENTI
What is the COCO8-Pose dataset, and how is it used with Ultralytics YOLO11?
The COCO8-Pose dataset is a small, versatile pose detection dataset that includes the first 8 images from the COCO train 2017 set, with 4 images for training and 4 for validation. It's designed for testing and debugging object detection models and experimenting with new detection approaches. This dataset is ideal for quick experiments with Ultralytics YOLO11. For more details on dataset configuration, check out the dataset YAML file here.
How do I train a YOLO11 model using the COCO8-Pose dataset in Ultralytics?
To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, follow these examples:
Esempio di treno
Per un elenco completo degli argomenti di formazione, consulta la pagina Formazione del modello.
Quali sono i vantaggi dell'utilizzo del set di dati COCO8-Pose?
Il set di dati COCO8-Pose offre diversi vantaggi:
- Dimensioni compatte: Con solo 8 immagini, è facile da gestire e perfetto per esperimenti veloci.
- Dati diversificati: Nonostante le dimensioni ridotte, include una grande varietà di scene, utili per testare a fondo le pipeline.
- Debug degli errori: Ideale per identificare gli errori di formazione ed eseguire controlli di correttezza prima di scalare a set di dati più grandi.
Per maggiori informazioni sulle sue caratteristiche e sul suo utilizzo, consulta la sezione Introduzione al Dataset.
How does mosaicing benefit the YOLO11 training process using the COCO8-Pose dataset?
La mosaicatura, dimostrata nelle immagini campione del set di dati COCO8-Pose, combina più immagini in una sola, aumentando la varietà di oggetti e scene all'interno di ogni gruppo di addestramento. Questa tecnica aiuta a migliorare la capacità del modello di generalizzare tra oggetti di varie dimensioni, rapporti d'aspetto e contesti, migliorando in ultima analisi le prestazioni del modello. Consulta la sezione Immagini di esempio e annotazioni per vedere le immagini di esempio.
Dove posso trovare il file YAML del dataset COCO8-Pose e come posso utilizzarlo?
The COCO8-Pose dataset YAML file can be found here. This file defines the dataset configuration, including paths, classes, and other relevant information. Use this file with the YOLO11 training scripts as mentioned in the Train Example section.
Per ulteriori FAQ e documentazione dettagliata, visita la Documentazione di Ultralytics .