Set di dati COCO8
Introduzione
Ultralytics COCO8 is a small, but versatile object detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
Guarda: Ultralytics Panoramica del set di dati COCO
This dataset is intended for use with Ultralytics HUB and YOLO11.
Set di dati YAML
Un file YAML (Yet Another Markup Language) viene utilizzato per definire la configurazione del dataset. Contiene informazioni sui percorsi del dataset, sulle classi e altre informazioni rilevanti. Nel caso del set di dati COCO8, il file coco8.yaml
Il file viene mantenuto all'indirizzo https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8.yaml.
ultralytics/cfg/datasets/coco8.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8 ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
Utilizzo
To train a YOLO11n model on the COCO8 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
Esempio di treno
Immagini di esempio e annotazioni
Ecco alcuni esempi di immagini tratte dal set di dati COCO8, con le relative annotazioni:
- Immagine a mosaico: Questa immagine mostra un lotto di formazione composto da immagini del dataset mosaicate. Il mosaico è una tecnica utilizzata durante l'addestramento che combina più immagini in un'unica immagine per aumentare la varietà di oggetti e scene all'interno di ogni gruppo di addestramento. Questo aiuta a migliorare la capacità del modello di generalizzarsi a oggetti di dimensioni, rapporti di aspetto e contesti diversi.
L'esempio mostra la varietà e la complessità delle immagini del dataset COCO8 e i vantaggi dell'utilizzo della mosaicatura durante il processo di formazione.
Citazioni e ringraziamenti
Se utilizzi il set di dati COCO nel tuo lavoro di ricerca o sviluppo, cita il seguente documento:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.
DOMANDE FREQUENTI
Per cosa viene utilizzato il dataset Ultralytics COCO8?
Il dataset Ultralytics COCO8 è un dataset compatto ma versatile per il rilevamento di oggetti, costituito dalle prime 8 immagini del set COCO train 2017, con 4 immagini per la formazione e 4 per la validazione. È stato progettato per il test e il debug dei modelli di rilevamento degli oggetti e per la sperimentazione di nuovi approcci di rilevamento. Nonostante le sue dimensioni ridotte, COCO8 offre una varietà sufficiente per fungere da verifica della correttezza delle tue pipeline di addestramento prima di distribuire set di dati più grandi. Per maggiori dettagli, visualizza il dataset COCO8.
How do I train a YOLO11 model using the COCO8 dataset?
To train a YOLO11 model using the COCO8 dataset, you can employ either Python or CLI commands. Here's how you can start:
Esempio di treno
Per un elenco completo degli argomenti disponibili, consulta la pagina Formazione del modello.
Perché dovrei utilizzare Ultralytics HUB per gestire la mia formazione COCO8?
Ultralytics HUB is an all-in-one web tool designed to simplify the training and deployment of YOLO models, including the Ultralytics YOLO11 models on the COCO8 dataset. It offers cloud training, real-time tracking, and seamless dataset management. HUB allows you to start training with a single click and avoids the complexities of manual setups. Discover more about Ultralytics HUB and its benefits.
Quali sono i vantaggi dell'utilizzo dell'aumento del mosaico nella formazione con il set di dati COCO8?
L'aumento del mosaico, dimostrato nel set di dati COCO8, combina più immagini in un'unica immagine durante l'addestramento. Questa tecnica aumenta la varietà di oggetti e scene in ogni lotto di addestramento, migliorando la capacità del modello di generalizzare tra oggetti di dimensioni, rapporti di aspetto e contesti diversi. Il risultato è un modello di rilevamento degli oggetti più robusto. Per maggiori dettagli, consulta la guida all'addestramento.
How can I validate my YOLO11 model trained on the COCO8 dataset?
Validation of your YOLO11 model trained on the COCO8 dataset can be performed using the model's validation commands. You can invoke the validation mode via CLI or Python script to evaluate the model's performance using precise metrics. For detailed instructions, visit the Validation page.