Vai al contenuto

Segmentazione dell'istanza

Esempi di segmentazione delle istanze

La segmentazione delle istanze va oltre il rilevamento degli oggetti e prevede l'identificazione di singoli oggetti in un'immagine e la loro segmentazione dal resto dell'immagine.

L'output di un modello di segmentazione di istanze è un insieme di maschere o contorni che delineano ogni oggetto dell'immagine, insieme alle etichette di classe e ai punteggi di confidenza per ogni oggetto. La segmentazione delle istanze è utile quando hai bisogno di sapere non solo dove si trovano gli oggetti in un'immagine, ma anche qual è la loro forma esatta.



Guarda: Esegui la segmentazione con il modello preaddestrato Ultralytics YOLOv8 in Python.

Suggerimento

YOLOv8 I modelli di segmento utilizzano il metodo -seg suffisso, cioè yolov8n-seg.pt e sono preaddestrati su COCO.

Modelli

YOLOv8 I modelli Segment pre-addestrati sono mostrati qui. I modelli Detect, Segment e Pose sono stati preaddestrati sul dataset COCO, mentre i modelli Classify sono stati preaddestrati sul dataset ImageNet.

I modelli vengono scaricati automaticamente dall'ultimarelease di Ultralytics al primo utilizzo.

Modello dimensione
(pixel)
mAPbox
50-95
mAPmask
50-95
Velocità
CPU ONNX
(ms)
Velocità
A100 TensorRT
(ms)
params
(M)
FLOP
(B)
YOLOv8n-Seg 640 36.7 30.5 96.1 1.21 3.4 12.6
YOLOv8s-Seg 640 44.6 36.8 155.7 1.47 11.8 42.6
YOLOv8m-Seg 640 49.9 40.8 317.0 2.18 27.3 110.2
YOLOv8l-Seg 640 52.3 42.6 572.4 2.79 46.0 220.5
YOLOv8x-Seg 640 53.4 43.4 712.1 4.02 71.8 344.1
  • mAPval I valori si riferiscono a un modello a scala singola su COCO val2017 set di dati.
    Riproduci da yolo val segment data=coco.yaml device=0
  • Velocità mediata sulle immagini COCO val utilizzando un Amazon EC2 P4d istanza.
    Riproduci da yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu

Treno

Addestra YOLOv8n-seg sul set di dati COCO128-seg per 100 epoche a dimensione immagine 640. Per un elenco completo degli argomenti disponibili, consulta la pagina di configurazione.

Esempio

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.yaml')  # build a new model from YAML
model = YOLO('yolov8n-seg.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640

Formato del set di dati

YOLO Il formato del set di dati di segmentazione può essere consultato in dettaglio nella Guida ai set di dati. Per convertire il tuo set di dati esistente da altri formati (come COCO ecc.) al formato YOLO , utilizza lo strumento JSON2YOLO di Ultralytics.

Val

Convalida l'accuratezza del modello addestrato YOLOv8n-seg sul set di dati COCO128-seg. Non è necessario passare alcun argomento in quanto l'opzione model mantiene la formazione data e gli argomenti come attributi del modello.

Esempio

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95(B)
metrics.box.map50  # map50(B)
metrics.box.map75  # map75(B)
metrics.box.maps   # a list contains map50-95(B) of each category
metrics.seg.map    # map50-95(M)
metrics.seg.map50  # map50(M)
metrics.seg.map75  # map75(M)
metrics.seg.maps   # a list contains map50-95(M) of each category
yolo segment val model=yolov8n-seg.pt  # val official model
yolo segment val model=path/to/best.pt  # val custom model

Prevedere

Utilizza un modello addestrato di YOLOv8n-seg per eseguire previsioni sulle immagini.

Esempio

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

Vedi tutto predict i dettagli della modalità nella sezione Prevedere pagina.

Esportazione

Esporta un modello YOLOv8n-seg in un formato diverso come ONNX, CoreML, ecc.

Esempio

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n-seg.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

I formati di esportazione disponibili di YOLOv8-seg sono riportati nella tabella seguente. Puoi fare previsioni o convalidare direttamente i modelli esportati, ad es. yolo predict model=yolov8n-seg.onnx. Al termine dell'esportazione vengono mostrati degli esempi di utilizzo per il tuo modello.

Formato format Argomento Modello Metadati Argomenti
PyTorch - yolov8n-seg.pt -
TorchScript torchscript yolov8n-seg.torchscript imgsz, optimize
ONNX onnx yolov8n-seg.onnx imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n-seg_openvino_model/ imgsz, half, int8
TensorRT engine yolov8n-seg.engine imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n-seg.mlpackage imgsz, half, int8, nms
TF SavedModel saved_model yolov8n-seg_saved_model/ imgsz, keras
TF GraphDef pb yolov8n-seg.pb imgsz
TF Lite tflite yolov8n-seg.tflite imgsz, half, int8
TF Bordo TPU edgetpu yolov8n-seg_edgetpu.tflite imgsz
TF.js tfjs yolov8n-seg_web_model/ imgsz, half, int8
PaddlePaddle paddle yolov8n-seg_paddle_model/ imgsz
ncnn ncnn yolov8n-seg_ncnn_model/ imgsz, half

Vedi tutto export dettagli nella sezione Esportazione pagina.



Creato 2023-11-12, Aggiornato 2024-02-03
Autori: glenn-jocher (9), Laughing-q (1), AyushExel (1)

Commenti