コンテンツへスキップ

Ultralytics YOLO11 Modes

Ultralytics YOLO エコシステムと統合

はじめに

Ultralytics YOLO11 is not just another object detection model; it's a versatile framework designed to cover the entire lifecycle of machine learning models—from data ingestion and model training to validation, deployment, and real-world tracking. Each mode serves a specific purpose and is engineered to offer you the flexibility and efficiency required for different tasks and use-cases.



見るんだ: Ultralytics モードチュートリアル:トレーニング、検証、予測、エクスポート、ベンチマーク。

モード一覧

Understanding the different modes that Ultralytics YOLO11 supports is critical to getting the most out of your models:

  • Trainモード:カスタムまたはプリロードされたデータセットでモデルを微調整します。
  • Valモード:モデルのパフォーマンスを検証するためのトレーニング後のチェックポイント。
  • 予測モード:実世界のデータからモデルの予測力を引き出します。
  • Export mode: Make your model deployment-ready in various formats.
  • 追跡モード:オブジェクト検出モデルをリアルタイムの追跡アプリケーションに拡張します。
  • ベンチマークモード:様々な展開環境でモデルの速度と精度を分析します。

This comprehensive guide aims to give you an overview and practical insights into each mode, helping you harness the full potential of YOLO11.

電車

Train mode is used for training a YOLO11 model on a custom dataset. In this mode, the model is trained using the specified dataset and hyperparameters. The training process involves optimizing the model's parameters so that it can accurately predict the classes and locations of objects in an image.

列車の例

バル

Val mode is used for validating a YOLO11 model after it has been trained. In this mode, the model is evaluated on a validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters of the model to improve its performance.

バルの例

予測する

Predict mode is used for making predictions using a trained YOLO11 model on new images or videos. In this mode, the model is loaded from a checkpoint file, and the user can provide images or videos to perform inference. The model predicts the classes and locations of objects in the input images or videos.

例を予測する

輸出

Export mode is used for exporting a YOLO11 model to a format that can be used for deployment. In this mode, the model is converted to a format that can be used by other software applications or hardware devices. This mode is useful when deploying the model to production environments.

輸出の例

トラック

Track mode is used for tracking objects in real-time using a YOLO11 model. In this mode, the model is loaded from a checkpoint file, and the user can provide a live video stream to perform real-time object tracking. This mode is useful for applications such as surveillance systems or self-driving cars.

トラック例

ベンチマーク

Benchmark mode is used to profile the speed and accuracy of various export formats for YOLO11. The benchmarks provide information on the size of the exported format, its mAP50-95 metrics (for object detection, segmentation, and pose) or accuracy_top5 metrics (for classification), and the inference time in milliseconds per image across various formats like ONNX, OpenVINO, TensorRT, and others. This information can help users choose the optimal export format for their specific use case based on their requirements for speed and accuracy.

ベンチマーク例

よくあるご質問

How do I train a custom object detection model with Ultralytics YOLO11?

Training a custom object detection model with Ultralytics YOLO11 involves using the train mode. You need a dataset formatted in YOLO format, containing images and corresponding annotation files. Use the following command to start the training process:

from ultralytics import YOLO

# Load a pre-trained YOLO model (you can choose n, s, m, l, or x versions)
model = YOLO("yolo11n.pt")

# Start training on your custom dataset
model.train(data="path/to/dataset.yaml", epochs=100, imgsz=640)
# Train a YOLO model from the command line
yolo train data=path/to/dataset.yaml epochs=100 imgsz=640

より詳細な手順については、Ultralytics Train Guideをご参照ください。

What metrics does Ultralytics YOLO11 use to validate the model's performance?

Ultralytics YOLO11 uses various metrics during the validation process to assess model performance. These include:

  • mAP(平均平均精度):物体検出の精度を評価する。
  • IOU(Intersection over Union):予測されたバウンディングボックスとグランドトゥルースのバウンディングボックスの重なりを測定する。
  • Precision and Recall: Precision measures the ratio of true positive detections to the total detected positives, while recall measures the ratio of true positive detections to the total actual positives.

以下のコマンドを実行して検証を開始することができる:

from ultralytics import YOLO

# Load a pre-trained or custom YOLO model
model = YOLO("yolo11n.pt")

# Run validation on your dataset
model.val(data="path/to/validation.yaml")
# Validate a YOLO model from the command line
yolo val data=path/to/validation.yaml

詳細はバリデーションガイドを参照。

How can I export my YOLO11 model for deployment?

Ultralytics YOLO11 offers export functionality to convert your trained model into various deployment formats such as ONNX, TensorRT, CoreML, and more. Use the following example to export your model:

from ultralytics import YOLO

# Load your trained YOLO model
model = YOLO("yolo11n.pt")

# Export the model to ONNX format (you can specify other formats as needed)
model.export(format="onnx")
# Export a YOLO model to ONNX format from the command line
yolo export model=yolo11n.pt format=onnx

各エクスポートフォーマットの詳細な手順は、エクスポートガイドに記載されています。

What is the purpose of the benchmark mode in Ultralytics YOLO11?

Benchmark mode in Ultralytics YOLO11 is used to analyze the speed and accuracy of various export formats such as ONNX, TensorRT, and OpenVINO. It provides metrics like model size, mAP50-95 オブジェクト検出、推論時間など、さまざまなハードウェア・セットアップに対応し、導入ニーズに最適なフォーマットを選択できます。

from ultralytics.utils.benchmarks import benchmark

# Run benchmark on GPU (device 0)
# You can adjust parameters like model, dataset, image size, and precision as needed
benchmark(model="yolo11n.pt", data="coco8.yaml", imgsz=640, half=False, device=0)
# Benchmark a YOLO model from the command line
# Adjust parameters as needed for your specific use case
yolo benchmark model=yolo11n.pt data='coco8.yaml' imgsz=640 half=False device=0

詳細はベンチマークガイドを参照。

How can I perform real-time object tracking using Ultralytics YOLO11?

Real-time object tracking can be achieved using the track mode in Ultralytics YOLO11. This mode extends object detection capabilities to track objects across video frames or live feeds. Use the following example to enable tracking:

from ultralytics import YOLO

# Load a pre-trained YOLO model
model = YOLO("yolo11n.pt")

# Start tracking objects in a video
# You can also use live video streams or webcam input
model.track(source="path/to/video.mp4")
# Perform object tracking on a video from the command line
# You can specify different sources like webcam (0) or RTSP streams
yolo track source=path/to/video.mp4

詳しい説明はトラックガイドをご覧ください。

📅 Created 1 year ago ✏️ Updated 1 month ago

コメント