コンテンツへスキップ

インスタンスのセグメンテーション

インスタンス分割の例

Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.

インスタンスセグメンテーションモデルの出力は、画像内の各オブジェクトの輪郭を示すマスクまたは輪郭のセットと、各オブジェクトのクラスラベルおよび信頼度スコアです。インスタンスセグメンテーションは、画像内のオブジェクトの位置だけでなく、その正確な形状も知る必要がある場合に便利です。



見るんだ: Run Segmentation with Pre-Trained Ultralytics YOLO Model in Python.

チップ

YOLO11 Segment models use the -seg サフィックス、すなわち yolo11n-seg.pt で事前に訓練されている。 COCO.

モデル

YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.

モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。

モデルサイズ
(ピクセル)
mAPbox
50-95
mAPmask
50-95
速度
CPU ONNX
(ms
)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-seg64038.932.065.9 ± 1.11.8 ± 0.02.910.4
YOLO11s-seg64046.637.8117.6 ± 4.92.9 ± 0.010.135.5
YOLO11m-seg64051.541.5281.6 ± 1.26.3 ± 0.122.4123.3
YOLO11l-seg64053.442.9344.2 ± 3.27.8 ± 0.227.6142.2
YOLO11x-seg64054.743.8664.5 ± 3.215.8 ± 0.762.1319.0
  • マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCO val2017 データセット。
    複製する yolo val segment data=coco-seg.yaml device=0
  • スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
    複製する yolo val segment data=coco-seg.yaml batch=1 device=0|cpu

電車

Train YOLO11n-seg on the COCO8-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.yaml")  # build a new model from YAML
model = YOLO("yolo11n-seg.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n-seg.yaml").load("yolo11n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml pretrained=yolo11n-seg.pt epochs=100 imgsz=640

データセット形式

YOLO セグメンテーション・データセットの形式は、データセット・ガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。

バル

Validate trained YOLO11n-seg model accuracy on the COCO8-seg dataset. No arguments are needed as the model トレーニング data と引数をモデル属性として使用する。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95(B)
metrics.box.map50  # map50(B)
metrics.box.map75  # map75(B)
metrics.box.maps  # a list contains map50-95(B) of each category
metrics.seg.map  # map50-95(M)
metrics.seg.map50  # map50(M)
metrics.seg.map75  # map75(M)
metrics.seg.maps  # a list contains map50-95(M) of each category
yolo segment val model=yolo11n-seg.pt  # val official model
yolo segment val model=path/to/best.pt  # val custom model

予測する

Use a trained YOLO11n-seg model to run predictions on images.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo segment predict model=yolo11n-seg.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

詳細を見る predict モードの詳細は 予測する ページを参照されたい。

輸出

Export a YOLO11n-seg model to a different format like ONNX, CoreML, etc.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n-seg.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Available YOLO11-seg export formats are in the table below. You can export to any format using the format 引数、すなわち format='onnx' または format='engine'.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolo11n-seg.onnx.使用例は、エクスポート完了後に表示されます。

フォーマットformat 議論モデルメタデータ論争
PyTorch-yolo11n-seg.pt-
TorchScripttorchscriptyolo11n-seg.torchscriptimgsz, optimize, batch
ONNXonnxyolo11n-seg.onnximgsz, half, dynamic, simplify, opset, batch
OpenVINOopenvinoyolo11n-seg_openvino_model/imgsz, half, int8, batch
TensorRTengineyolo11n-seg.engineimgsz, half, dynamic, simplify, workspace, int8, batch
CoreMLcoremlyolo11n-seg.mlpackageimgsz, half, int8, nms, batch
TF SavedModelsaved_modelyolo11n-seg_saved_model/imgsz, keras, int8, batch
TF GraphDefpbyolo11n-seg.pbimgsz, batch
TF ライトtfliteyolo11n-seg.tfliteimgsz, half, int8, batch
TF エッジTPUedgetpuyolo11n-seg_edgetpu.tfliteimgsz
TF.jstfjsyolo11n-seg_web_model/imgsz, half, int8, batch
PaddlePaddlepaddleyolo11n-seg_paddle_model/imgsz, batch
MNNmnnyolo11n-seg.mnnimgsz, batch, int8, half
NCNNncnnyolo11n-seg_ncnn_model/imgsz, half, batch
IMX500imxyolo11n-seg_imx_model/imgsz, int8

詳細を見る export 詳細は 輸出 ページを参照されたい。

よくあるご質問

How do I train a YOLO11 segmentation model on a custom dataset?

To train a YOLO11 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like JSON2YOLO to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:

from ultralytics import YOLO

# Load a pretrained YOLO11 segment model
model = YOLO("yolo11n-seg.pt")

# Train the model
results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)
yolo segment train data=path/to/your_dataset.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

利用可能な引数については、コンフィギュレーション・ページを確認してください。

What is the difference between object detection and instance segmentation in YOLO11?

Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLO11 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.

Why use YOLO11 for instance segmentation?

Ultralytics YOLO11 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLO11 Segment models come pretrained on the COCO dataset, ensuring robust performance across a variety of objects. Additionally, YOLO supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.

How do I load and validate a pretrained YOLO segmentation model?

Loading and validating a pretrained YOLO segmentation model is straightforward. Here's how you can do it using both Python and CLI:

from ultralytics import YOLO

# Load a pretrained model
model = YOLO("yolo11n-seg.pt")

# Validate the model
metrics = model.val()
print("Mean Average Precision for boxes:", metrics.box.map)
print("Mean Average Precision for masks:", metrics.seg.map)
yolo segment val model=yolo11n-seg.pt

These steps will provide you with validation metrics like Mean Average Precision (mAP), crucial for assessing model performance.

How can I export a YOLO segmentation model to ONNX format?

Exporting a YOLO segmentation model to ONNX format is simple and can be done using Python or CLI commands:

from ultralytics import YOLO

# Load a pretrained model
model = YOLO("yolo11n-seg.pt")

# Export the model to ONNX format
model.export(format="onnx")
yolo export model=yolo11n-seg.pt format=onnx

様々なフォーマットへのエクスポートの詳細については、エクスポートのページを参照してください。

📅 Created 1 year ago ✏️ Updated 1 month ago

コメント