コンテンツへスキップ

ポーズ推定

ポーズ推定例

姿勢推定は、通常キーポイントと呼ばれる画像内の特定の点の位置を特定するタスクである。キーポイントは、関節、ランドマーク、または他の特徴的な特徴など、オブジェクトのさまざまな部分を表すことができます。キーポイントの位置は通常、2次元の [x, y] または3D [x, y, visible] の座標である。

ポーズ推定モデルの出力は、画像内のオブジェクトのキーポイントを表す点の集合であり、通常は各点の信頼度スコアとともに出力される。ポーズ推定は、シーン内のオブジェクトの特定の部分と、それらの位置関係を特定する必要がある場合に適しています。


見るんだ: Pose Estimation with Ultralytics YOLO.

見るんだ: Ultralytics HUBによる姿勢推定。

チップ

YOLO11 ポーズ モデルは -pose サフィックス、すなわち yolo11n-pose.pt.これらのモデルは COCOのキーポイント データセットであり、様々な姿勢推定タスクに適している。

In the default YOLO11 pose model, there are 17 keypoints, each representing a different part of the human body. Here is the mapping of each index to its respective body joint:

0: 鼻 1: 左目 2: 右目 3: 左耳 4: 右耳 5: 左肩 6: 右肩 7: 左肘 8: 右肘 9: 左手首 10: 右手首 11: 左股関節 12: 右股関節 13: 左膝 14: 右膝 15: 左足首 16: 右足首

モデル

YOLO11 pretrained Pose models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.

モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。

モデル サイズ
(ピクセル)
mAPpose
50-95
mAPpose
50
速度
CPU ONNX
(ms
)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-pose 640 50.0 81.0 52.4 ± 0.5 1.7 ± 0.0 2.9 7.6
YOLO11s-pose 640 58.9 86.3 90.5 ± 0.6 2.6 ± 0.0 9.9 23.2
YOLO11m-pose 640 64.9 89.4 187.3 ± 0.8 4.9 ± 0.1 20.9 71.7
YOLO11l-pose 640 66.1 89.9 247.7 ± 1.1 6.4 ± 0.1 26.2 90.7
YOLO11x-pose 640 69.5 91.1 488.0 ± 13.9 12.1 ± 0.2 58.8 203.3
  • マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCOキーポイントval2017 データセット。
    複製する yolo val pose data=coco-pose.yaml device=0
  • スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
    複製する yolo val pose data=coco-pose.yaml batch=1 device=0|cpu

電車

Train a YOLO11-pose model on the COCO8-pose dataset.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.yaml")  # build a new model from YAML
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n-pose.yaml").load("yolo11n-pose.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml pretrained=yolo11n-pose.pt epochs=100 imgsz=640

データセット形式

YOLO ポーズデータセットの形式は、データセットガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。

バル

Validate trained YOLO11n-pose model accuracy on the COCO8-pose dataset. No arguments are needed as the model トレーニング data と引数をモデル属性として使用する。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo pose val model=yolo11n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

予測する

Use a trained YOLO11n-pose model to run predictions on images.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo pose predict model=yolo11n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

詳細を見る predict モードの詳細は 予測する ページを参照されたい。

輸出

Export a YOLO11n Pose model to a different format like ONNX, CoreML, etc.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Available YOLO11-pose export formats are in the table below. You can export to any format using the format 引数、すなわち format='onnx' または format='engine'.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolo11n-pose.onnx.使用例は、エクスポート完了後に表示されます。

フォーマット format 議論 モデル メタデータ 論争
PyTorch - yolo11n-pose.pt -
TorchScript torchscript yolo11n-pose.torchscript imgsz, optimize, batch
ONNX onnx yolo11n-pose.onnx imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolo11n-pose_openvino_model/ imgsz, half, int8, batch
TensorRT engine yolo11n-pose.engine imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolo11n-pose.mlpackage imgsz, half, int8, nms, batch
TF SavedModel saved_model yolo11n-pose_saved_model/ imgsz, keras, int8, batch
TF GraphDef pb yolo11n-pose.pb imgsz, batch
TF ライト tflite yolo11n-pose.tflite imgsz, half, int8, batch
TF エッジTPU edgetpu yolo11n-pose_edgetpu.tflite imgsz
TF.js tfjs yolo11n-pose_web_model/ imgsz, half, int8, batch
PaddlePaddle paddle yolo11n-pose_paddle_model/ imgsz, batch
NCNN ncnn yolo11n-pose_ncnn_model/ imgsz, half, batch

詳細を見る export 詳細は 輸出 ページを参照されたい。

よくあるご質問

What is Pose Estimation with Ultralytics YOLO11 and how does it work?

Pose estimation with Ultralytics YOLO11 involves identifying specific points, known as keypoints, in an image. These keypoints typically represent joints or other important features of the object. The output includes the [x, y] coordinates and confidence scores for each point. YOLO11-pose models are specifically designed for this task and use the -pose のような接尾辞をつける。 yolo11n-pose.pt.これらのモデルは、次のようなデータセットで事前に訓練されています。 COCOのキーポイント 様々なポーズ推定タスクに使用できます。詳しくは ポーズ推定ページ.

How can I train a YOLO11-pose model on a custom dataset?

Training a YOLO11-pose model on a custom dataset involves loading a model, either a new model defined by a YAML file or a pre-trained model. You can then start the training process using your specified dataset and parameters.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.yaml")  # build a new model from YAML
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="your-dataset.yaml", epochs=100, imgsz=640)

トレーニングの包括的な詳細については、「トレーニング」の項を参照のこと。

How do I validate a trained YOLO11-pose model?

Validation of a YOLO11-pose model involves assessing its accuracy using the same dataset parameters retained during training. Here's an example:

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered

詳しくはバル・セクションをご覧ください。

Can I export a YOLO11-pose model to other formats, and how?

Yes, you can export a YOLO11-pose model to various formats like ONNX, CoreML, TensorRT, and more. This can be done using either Python or the Command Line Interface (CLI).

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")

詳しくはエクスポートの項を参照。

What are the available Ultralytics YOLO11-pose models and their performance metrics?

Ultralytics YOLO11 offers various pretrained pose models such as YOLO11n-pose, YOLO11s-pose, YOLO11m-pose, among others. These models differ in size, accuracy (mAP), and speed. For instance, the YOLO11n-pose model achieves a mAPpose50-95 of 50.4 and an mAPpose50 of 80.1. For a complete list and performance details, visit the Models Section.


📅 Created 11 months ago ✏️ Updated 1 day ago

コメント