コンテンツへスキップ

ポーズ推定

ポーズ推定例

姿勢推定は、通常キーポイントと呼ばれる画像内の特定の点の位置を特定するタスクである。キーポイントは、関節、ランドマーク、または他の特徴的な特徴など、オブジェクトのさまざまな部分を表すことができます。キーポイントの位置は通常、2次元の [x, y] または3D [x, y, visible] の座標である。

ポーズ推定モデルの出力は、画像内のオブジェクトのキーポイントを表す点の集合であり、通常は各点の信頼度スコアとともに出力される。ポーズ推定は、シーン内のオブジェクトの特定の部分と、それらの位置関係を特定する必要がある場合に適しています。


見るんだ: Ultralytics YOLOv8 によるポーズ推定 .

見るんだ: Ultralytics HUBによる姿勢推定。

チップ

YOLOv8 ポーズ モデルは -pose サフィックス、すなわち yolov8n-pose.pt.これらのモデルは COCOのキーポイント データセットであり、様々な姿勢推定タスクに適している。

モデル

YOLOv8 ここでは、事前に訓練されたPoseモデルを示す。Detect、Segment、PoseモデルはCOCOデータセットで事前学習され、ClassifyモデルはImageNetデータセットで事前学習されています。

モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。

モデル サイズ
(ピクセル)
mAPpose
50-95
mAPpose
50
速度
CPUONNX
(ms
)
速度
A100 TensorRT
(ms
)
params
(M)
FLOPs
(B)
YOLOv8n-ポーズ 640 50.4 80.1 131.8 1.18 3.3 9.2
YOLOv8s-ポーズ 640 60.0 86.2 233.2 1.42 11.6 30.2
YOLOv8m-ポーズ 640 65.0 88.8 456.3 2.00 26.4 81.0
YOLOv8l-ポーズ 640 67.6 90.0 784.5 2.59 44.4 168.6
YOLOv8x-ポーズ 640 69.2 90.2 1607.1 3.73 69.4 263.2
YOLOv8x-pose-p6 1280 71.6 91.2 4088.7 10.04 99.1 1066.4
  • マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCOキーポイントval2017 データセット。
    複製する yolo val pose data=coco-pose.yaml device=0
  • スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
    複製する yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu

電車

COCO128-pose データセットでYOLOv8-pose モデルをトレーニングする。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.yaml")  # build a new model from YAML
model = YOLO("yolov8n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n-pose.yaml").load("yolov8n-pose.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640

データセット形式

YOLO ポーズデータセットの形式は、データセットガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。

バル

COCO128-pose データセットで学習したYOLOv8n-pose モデルの精度を検証する。引数として model トレーニング data と引数をモデル属性として使用する。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo pose val model=yolov8n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

予測する

学習済みのYOLOv8n-pose モデルを使用して、画像に対して予測を実行する。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

詳細を見る predict モードの詳細は 予測する ページを参照されたい。

輸出

YOLOv8n ポーズモデルを、ONNX 、CoreML などの異なるフォーマットにエクスポートします。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolov8n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

利用可能なYOLOv8-pose エクスポートフォーマットは以下の表の通りです。どのフォーマットでも format 引数、すなわち format='onnx' または format='engine'.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolov8n-pose.onnx.使用例は、エクスポート完了後に表示されます。

フォーマット format 議論 モデル メタデータ 論争
PyTorch - yolov8n-pose.pt ✅ -
TorchScript torchscript yolov8n-pose.torchscript ✅ imgsz, optimize, batch
ONNX onnx yolov8n-pose.onnx ✅ imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolov8n-pose_openvino_model/ ✅ imgsz, half, int8, batch
TensorRT engine yolov8n-pose.engine ✅ imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolov8n-pose.mlpackage ✅ imgsz, half, int8, nms, batch
TF SavedModel saved_model yolov8n-pose_saved_model/ ✅ imgsz, keras, int8, batch
TF GraphDef pb yolov8n-pose.pb ❌ imgsz, batch
TF ライト tflite yolov8n-pose.tflite ✅ imgsz, half, int8, batch
TF エッジTPU edgetpu yolov8n-pose_edgetpu.tflite ✅ imgsz
TF.js tfjs yolov8n-pose_web_model/ ✅ imgsz, half, int8, batch
PaddlePaddle paddle yolov8n-pose_paddle_model/ ✅ imgsz, batch
NCNN ncnn yolov8n-pose_ncnn_model/ ✅ imgsz, half, batch

詳細を見る export 詳細は 輸出 ページを参照されたい。



Created 2023-11-12, Updated 2024-06-10
Authors: glenn-jocher (18), Burhan-Q (4), RizwanMunawar (1), AyushExel (1), Laughing-q (1)

コメント