コンテンツへスキップ

物体検出

物体検出の例

オブジェクト検出は、画像やビデオストリーム内のオブジェクトの位置とクラスを識別するタスクです。

オブジェクト検出の出力は、画像内のオブジェクトを囲むバウンディングボックスのセットと、各ボックスのクラスラベルと信頼度スコアです。オブジェクト検出は、シーン内の興味のあるオブジェクトを識別する必要があるが、オブジェクトの位置や正確な形状を正確に知る必要がない場合に適しています。



見るんだ: 事前に訓練されたUltralytics YOLOv8 モデルによる物体検出。

チップ

YOLOv8 ディテクト・モデルは、デフォルトのYOLOv8 。 yolov8n.pt で事前に訓練されている。 COCO.

モデル

YOLOv8 ここでは、事前学習されたDetectモデルを示す。Detect、Segment、PoseモデルはCOCOデータセットで事前学習され、ClassifyモデルはImageNetデータセットで事前学習されます。

モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。

モデル サイズ
(ピクセル)
mAPval
50-95
速度
CPUONNX
(ms
)
速度
A100 TensorRT
(ms
)
params
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8
  • マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCO val2017 データセット。
    複製する yolo val detect data=coco.yaml device=0
  • スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
    複製する yolo val detect data=coco8.yaml batch=1 device=0|cpu

電車

COCO8データセットでYOLOv8n 、画像サイズ640で100エポック学習します。利用可能な引数の全リストは設定ページを参照。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from YAML
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo detect train data=coco8.yaml model=yolov8n.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco8.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

データセット形式

YOLO 検出データセットの形式は、データセットガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。

バル

COCO8 データセットで学習済みYOLOv8n モデルの精度を検証する。として引数を渡す必要はない。 model トレーニング data と引数をモデル属性として使用する。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo detect val model=yolov8n.pt  # val official model
yolo detect val model=path/to/best.pt  # val custom model

予測する

学習済みのYOLOv8n モデルを使って、画像の予測を実行する。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

詳細を見る predict モードの詳細は 予測する ページを参照されたい。

輸出

YOLOv8n 、ONNX 、CoreML などの異なるフォーマットにエクスポートします。

例

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolov8n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

利用可能なYOLOv8 エクスポート形式は以下の表の通りです。どのフォーマットでも format 引数、すなわち format='onnx' または format='engine'.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolov8n.onnx.使用例は、エクスポート完了後に表示されます。

フォーマット format 議論 モデル メタデータ 論争
PyTorch - yolov8n.pt ✅ -
TorchScript torchscript yolov8n.torchscript ✅ imgsz, optimize, batch
ONNX onnx yolov8n.onnx ✅ imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolov8n_openvino_model/ ✅ imgsz, half, int8, batch
TensorRT engine yolov8n.engine ✅ imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolov8n.mlpackage ✅ imgsz, half, int8, nms, batch
TF SavedModel saved_model yolov8n_saved_model/ ✅ imgsz, keras, int8, batch
TF GraphDef pb yolov8n.pb ❌ imgsz, batch
TF ライト tflite yolov8n.tflite ✅ imgsz, half, int8, batch
TF エッジTPU edgetpu yolov8n_edgetpu.tflite ✅ imgsz
TF.js tfjs yolov8n_web_model/ ✅ imgsz, half, int8, batch
PaddlePaddle paddle yolov8n_paddle_model/ ✅ imgsz, batch
NCNN ncnn yolov8n_ncnn_model/ ✅ imgsz, half, batch

詳細を見る export 詳細は 輸出 ページを参照されたい。



Created 2023-11-12, Updated 2024-06-10
Authors: glenn-jocher (19), Burhan-Q (4), Laughing-q (1)

コメント