物体検出
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
オブジェクト検出の出力は、画像内のオブジェクトを囲むバウンディングボックスのセットと、各ボックスのクラスラベルと信頼度スコアです。オブジェクト検出は、シーン内の興味のあるオブジェクトを識別する必要があるが、オブジェクトの位置や正確な形状を正確に知る必要がない場合に適しています。
見るんだ: Object Detection with Pre-trained Ultralytics YOLO Model.
チップ
YOLO11 Detect models are the default YOLO11 models, i.e. yolo11n.pt
で事前に訓練されている。 COCO.
モデル
YOLO11 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.
モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。
モデル | サイズ (ピクセル) |
mAPval 50-95 |
速度 CPU ONNX (ms) |
Speed T4 TensorRT10 (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLO11n | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
YOLO11s | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
YOLO11m | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
YOLO11l | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
YOLO11x | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
- マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCO val2017 データセット。
複製するyolo val detect data=coco.yaml device=0
- スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
複製するyolo val detect data=coco.yaml batch=1 device=0|cpu
電車
Train YOLO11n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.
例
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.yaml") # build a new model from YAML
model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
model = YOLO("yolo11n.yaml").load("yolo11n.pt") # build from YAML and transfer weights
# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo detect train data=coco8.yaml model=yolo11n.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco8.yaml model=yolo11n.yaml pretrained=yolo11n.pt epochs=100 imgsz=640
データセット形式
YOLO 検出データセットの形式は、データセットガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。
バル
Validate trained YOLO11n model accuracy on the COCO8 dataset. No arguments are needed as the model
トレーニング data
と引数をモデル属性として使用する。
例
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
予測する
Use a trained YOLO11n model to run predictions on images.
例
詳細を見る predict
モードの詳細は 予測する ページを参照されたい。
輸出
Export a YOLO11n model to a different format like ONNX, CoreML, etc.
例
Available YOLO11 export formats are in the table below. You can export to any format using the format
引数、すなわち format='onnx'
または format='engine'
.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolo11n.onnx
.使用例は、エクスポート完了後に表示されます。
フォーマット | format 議論 |
モデル | メタデータ | 論争 |
---|---|---|---|---|
PyTorch | - | yolo11n.pt |
✅ | - |
TorchScript | torchscript |
yolo11n.torchscript |
✅ | imgsz , optimize , batch |
ONNX | onnx |
yolo11n.onnx |
✅ | imgsz , half , dynamic , simplify , opset , batch |
OpenVINO | openvino |
yolo11n_openvino_model/ |
✅ | imgsz , half , int8 , batch |
TensorRT | engine |
yolo11n.engine |
✅ | imgsz , half , dynamic , simplify , workspace , int8 , batch |
CoreML | coreml |
yolo11n.mlpackage |
✅ | imgsz , half , int8 , nms , batch |
TF SavedModel | saved_model |
yolo11n_saved_model/ |
✅ | imgsz , keras , int8 , batch |
TF GraphDef | pb |
yolo11n.pb |
❌ | imgsz , batch |
TF ライト | tflite |
yolo11n.tflite |
✅ | imgsz , half , int8 , batch |
TF エッジTPU | edgetpu |
yolo11n_edgetpu.tflite |
✅ | imgsz |
TF.js | tfjs |
yolo11n_web_model/ |
✅ | imgsz , half , int8 , batch |
PaddlePaddle | paddle |
yolo11n_paddle_model/ |
✅ | imgsz , batch |
NCNN | ncnn |
yolo11n_ncnn_model/ |
✅ | imgsz , half , batch |
詳細を見る export
詳細は 輸出 ページを参照されたい。
よくあるご質問
How do I train a YOLO11 model on my custom dataset?
Training a YOLO11 model on a custom dataset involves a few steps:
- データセットを準備する:データセットがYOLO 形式であることを確認してください。ガイダンスについては、データセット・ガイドを参照してください。
- モデルをロードする:Ultralytics YOLO ライブラリを使用して、事前にトレーニングされたモデルをロードするか、YAML ファイルから新しいモデルを作成します。
- モデルを訓練する:を実行する。
train
メソッド(Python )またはyolo detect train
コマンドをCLI 。
例
詳細な設定オプションについては、設定のページをご覧ください。
What pretrained models are available in YOLO11?
Ultralytics YOLO11 offers various pretrained models for object detection, segmentation, and pose estimation. These models are pretrained on the COCO dataset or ImageNet for classification tasks. Here are some of the available models:
詳細なリストとパフォーマンス指標については、モデルのセクションを参照してください。
How can I validate the accuracy of my trained YOLO model?
To validate the accuracy of your trained YOLO11 model, you can use the .val()
メソッド(Python )または yolo detect val
コマンドをCLI 。これにより、mAP50-95、mAP50などのメトリクスが得られる。
例
バリデーションの詳細については、バルのページをご覧ください。
What formats can I export a YOLO11 model to?
Ultralytics YOLO11 allows exporting models to various formats such as ONNX, TensorRT, CoreML, and more to ensure compatibility across different platforms and devices.
例
エクスポートのページで、サポートされているフォーマットの完全なリストと手順を確認してください。
Why should I use Ultralytics YOLO11 for object detection?
Ultralytics YOLO11 is designed to offer state-of-the-art performance for object detection, segmentation, and pose estimation. Here are some key advantages:
- 事前学習済みモデル:COCOやImageNetのような一般的なデータセットで事前に訓練されたモデルを利用することで、より迅速な開発が可能になります。
- 高精度:驚異的なmAPスコアを達成し、信頼性の高い物体検出を実現。
- スピード:リアルタイム推論に最適化されており、迅速な処理を必要とするアプリケーションに最適です。
- 柔軟性:モデルをONNX やTensorRT などのさまざまな形式にエクスポートして、複数のプラットフォームに展開できます。
Explore our Blog for use cases and success stories showcasing YOLO11 in action.