コンテンツへスキップ

物体検出

物体検出の例

Object detection is a task that involves identifying the location and class of objects in an image or video stream.

オブジェクト検出の出力は、画像内のオブジェクトを囲むバウンディングボックスのセットと、各ボックスのクラスラベルと信頼度スコアです。オブジェクト検出は、シーン内の興味のあるオブジェクトを識別する必要があるが、オブジェクトの位置や正確な形状を正確に知る必要がない場合に適しています。



見るんだ: Object Detection with Pre-trained Ultralytics YOLO Model.

チップ

YOLO11 Detect models are the default YOLO11 models, i.e. yolo11n.pt で事前に訓練されている。 COCO.

モデル

YOLO11 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.

モデルは、初回使用時に最新のUltralytics リリースから自動的にダウンロードされます。

モデル サイズ
(ピクセル)
mAPval
50-95
速度
CPU ONNX
(ms
)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5
YOLO11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5
YOLO11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0
YOLO11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9
YOLO11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9
  • マップバル 数値はシングル・モデル、シングル・スケールのものである。 COCO val2017 データセット。
    複製する yolo val detect data=coco.yaml device=0
  • スピード を使用してCOCOバル画像を平均化した。 アマゾンEC2 P4d インスタンスだ。
    複製する yolo val detect data=coco.yaml batch=1 device=0|cpu

電車

Train YOLO11n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.yaml")  # build a new model from YAML
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n.yaml").load("yolo11n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo detect train data=coco8.yaml model=yolo11n.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco8.yaml model=yolo11n.yaml pretrained=yolo11n.pt epochs=100 imgsz=640

データセット形式

YOLO 検出データセットの形式は、データセットガイドに詳しく書かれている。既存のデータセットを他のフォーマット(COCOなど)からYOLO フォーマットに変換するには、Ultralytics のJSON2YOLOツールをご利用ください。

バル

Validate trained YOLO11n model accuracy on the COCO8 dataset. No arguments are needed as the model トレーニング data と引数をモデル属性として使用する。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo detect val model=yolo11n.pt  # val official model
yolo detect val model=path/to/best.pt  # val custom model

予測する

Use a trained YOLO11n model to run predictions on images.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo detect predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

詳細を見る predict モードの詳細は 予測する ページを参照されたい。

輸出

Export a YOLO11n model to a different format like ONNX, CoreML, etc.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Available YOLO11 export formats are in the table below. You can export to any format using the format 引数、すなわち format='onnx' または format='engine'.エクスポートされたモデルを直接予測または検証することができます。 yolo predict model=yolo11n.onnx.使用例は、エクスポート完了後に表示されます。

フォーマット format 議論 モデル メタデータ 論争
PyTorch - yolo11n.pt -
TorchScript torchscript yolo11n.torchscript imgsz, optimize, batch
ONNX onnx yolo11n.onnx imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolo11n_openvino_model/ imgsz, half, int8, batch
TensorRT engine yolo11n.engine imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolo11n.mlpackage imgsz, half, int8, nms, batch
TF SavedModel saved_model yolo11n_saved_model/ imgsz, keras, int8, batch
TF GraphDef pb yolo11n.pb imgsz, batch
TF ライト tflite yolo11n.tflite imgsz, half, int8, batch
TF エッジTPU edgetpu yolo11n_edgetpu.tflite imgsz
TF.js tfjs yolo11n_web_model/ imgsz, half, int8, batch
PaddlePaddle paddle yolo11n_paddle_model/ imgsz, batch
NCNN ncnn yolo11n_ncnn_model/ imgsz, half, batch

詳細を見る export 詳細は 輸出 ページを参照されたい。

よくあるご質問

How do I train a YOLO11 model on my custom dataset?

Training a YOLO11 model on a custom dataset involves a few steps:

  1. データセットを準備する:データセットがYOLO 形式であることを確認してください。ガイダンスについては、データセット・ガイドを参照してください。
  2. モデルをロードする:Ultralytics YOLO ライブラリを使用して、事前にトレーニングされたモデルをロードするか、YAML ファイルから新しいモデルを作成します。
  3. モデルを訓練する:を実行する。 train メソッド(Python )または yolo detect train コマンドをCLI 。

from ultralytics import YOLO

# Load a pretrained model
model = YOLO("yolo11n.pt")

# Train the model on your custom dataset
model.train(data="my_custom_dataset.yaml", epochs=100, imgsz=640)
yolo detect train data=my_custom_dataset.yaml model=yolo11n.pt epochs=100 imgsz=640

詳細な設定オプションについては、設定のページをご覧ください。

What pretrained models are available in YOLO11?

Ultralytics YOLO11 offers various pretrained models for object detection, segmentation, and pose estimation. These models are pretrained on the COCO dataset or ImageNet for classification tasks. Here are some of the available models:

詳細なリストとパフォーマンス指標については、モデルのセクションを参照してください。

How can I validate the accuracy of my trained YOLO model?

To validate the accuracy of your trained YOLO11 model, you can use the .val() メソッド(Python )または yolo detect val コマンドをCLI 。これにより、mAP50-95、mAP50などのメトリクスが得られる。

from ultralytics import YOLO

# Load the model
model = YOLO("path/to/best.pt")

# Validate the model
metrics = model.val()
print(metrics.box.map)  # mAP50-95
yolo detect val model=path/to/best.pt

バリデーションの詳細については、バルのページをご覧ください。

What formats can I export a YOLO11 model to?

Ultralytics YOLO11 allows exporting models to various formats such as ONNX, TensorRT, CoreML, and more to ensure compatibility across different platforms and devices.

from ultralytics import YOLO

# Load the model
model = YOLO("yolo11n.pt")

# Export the model to ONNX format
model.export(format="onnx")
yolo export model=yolo11n.pt format=onnx

エクスポートのページで、サポートされているフォーマットの完全なリストと手順を確認してください。

Why should I use Ultralytics YOLO11 for object detection?

Ultralytics YOLO11 is designed to offer state-of-the-art performance for object detection, segmentation, and pose estimation. Here are some key advantages:

  1. 事前学習済みモデル:COCOやImageNetのような一般的なデータセットで事前に訓練されたモデルを利用することで、より迅速な開発が可能になります。
  2. 高精度:驚異的なmAPスコアを達成し、信頼性の高い物体検出を実現。
  3. スピード:リアルタイム推論に最適化されており、迅速な処理を必要とするアプリケーションに最適です。
  4. 柔軟性:モデルをONNX やTensorRT などのさまざまな形式にエクスポートして、複数のプラットフォームに展開できます。

Explore our Blog for use cases and success stories showcasing YOLO11 in action.


📅 Created 11 months ago ✏️ Updated 12 days ago

コメント