Saltar para o conteúdo

Exportação MNN para YOLO11 Models and Deploy

MNN

Arquitetura MNN

O MNN é uma estrutura de aprendizagem profunda altamente eficiente e leve. Suporta inferência e formação de modelos de aprendizagem profunda e tem um desempenho líder na indústria para inferência e formação no dispositivo. Atualmente, a MNN foi integrada em mais de 30 aplicações da Alibaba Inc, tais como Taobao, Tmall, Youku, DingTalk, Xianyu, etc., abrangendo mais de 70 cenários de utilização, tais como transmissão em direto, captura de vídeos curtos, recomendação de pesquisa, pesquisa de produtos por imagem, marketing interativo, distribuição de acções, controlo de riscos de segurança. Além disso, a MNN também é utilizada em dispositivos incorporados, como a IoT.

Exportar para MNN: Conversão do modelo YOLO11

Pode expandir a compatibilidade de modelos e a flexibilidade de implementação convertendo os modelos YOLO11 para o formato MNN.

Instalação

Para instalar os pacotes necessários, execute:

Instalação

# Install the required package for YOLO11 and MNN
pip install ultralytics
pip install MNN

Utilização

Antes de se debruçar sobre as instruções de utilização, é importante notar que, embora todos os modelos deUltralytics YOLO11 estejam disponíveis para exportação, pode certificar-se de que o modelo selecionado suporta a funcionalidade de exportação aqui.

Utilização

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export the model to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn'

# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")

# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to MNN format
yolo export model=yolo11n.pt format=mnn  # creates 'yolo11n.mnn'

# Run inference with the exported model
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'

Para obter mais detalhes sobre as opções de exportação suportadas, visite a página de documentaçãoUltralytics sobre opções de implantação.

Inferência apenas com MNN

É implementada uma função que se baseia exclusivamente no MNN para YOLO11 inferência e pré-processamento, fornecendo versões Python e C++ para facilitar a implementação em qualquer cenário.

MNN

import argparse

import MNN
import MNN.cv as cv2
import MNN.numpy as np


def inference(model, img, precision, backend, thread):
    config = {}
    config["precision"] = precision
    config["backend"] = backend
    config["numThread"] = thread
    rt = MNN.nn.create_runtime_manager((config,))
    # net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
    net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
    original_image = cv2.imread(img)
    ih, iw, _ = original_image.shape
    length = max((ih, iw))
    scale = length / 640
    image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
    image = cv2.resize(
        image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
    )
    input_var = np.expand_dims(image, 0)
    input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
    output_var = net.forward(input_var)
    output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
    output_var = output_var.squeeze()
    # output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    cx = output_var[0]
    cy = output_var[1]
    w = output_var[2]
    h = output_var[3]
    probs = output_var[4:]
    # [cx, cy, w, h] -> [y0, x0, y1, x1]
    x0 = cx - w * 0.5
    y0 = cy - h * 0.5
    x1 = cx + w * 0.5
    y1 = cy + h * 0.5
    boxes = np.stack([x0, y0, x1, y1], axis=1)
    # get max prob and idx
    scores = np.max(probs, 0)
    class_ids = np.argmax(probs, 0)
    result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
    print(result_ids.shape)
    # nms result box, score, ids
    result_boxes = boxes[result_ids]
    result_scores = scores[result_ids]
    result_class_ids = class_ids[result_ids]
    for i in range(len(result_boxes)):
        x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
        y0 = int(y0 * scale)
        y1 = int(y1 * scale)
        x0 = int(x0 * scale)
        x1 = int(x1 * scale)
        print(result_class_ids[i])
        cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
    cv2.imwrite("res.jpg", original_image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
    parser.add_argument("--img", type=str, required=True, help="the input image path")
    parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
    parser.add_argument(
        "--backend",
        type=str,
        default="CPU",
        help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
    )
    parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
    args = parser.parse_args()
    inference(args.model, args.img, args.precision, args.backend, args.thread)
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>

#include <cv/cv.hpp>

using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;

int main(int argc, const char* argv[]) {
    if (argc < 3) {
        MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
        return 0;
    }
    int thread = 4;
    int precision = 0;
    int forwardType = MNN_FORWARD_CPU;
    if (argc >= 4) {
        forwardType = atoi(argv[3]);
    }
    if (argc >= 5) {
        precision = atoi(argv[4]);
    }
    if (argc >= 6) {
        thread = atoi(argv[5]);
    }
    MNN::ScheduleConfig sConfig;
    sConfig.type = static_cast<MNNForwardType>(forwardType);
    sConfig.numThread = thread;
    BackendConfig bConfig;
    bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
    sConfig.backendConfig = &bConfig;
    std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
    if(rtmgr == nullptr) {
        MNN_ERROR("Empty RuntimeManger\n");
        return 0;
    }
    rtmgr->setCache(".cachefile");

    std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
    auto original_image = imread(argv[2]);
    auto dims = original_image->getInfo()->dim;
    int ih = dims[0];
    int iw = dims[1];
    int len = ih > iw ? ih : iw;
    float scale = len / 640.0;
    std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
    auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
    auto image = _Pad(original_image, pads, CONSTANT);
    image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
    auto input = _Unsqueeze(image, {0});
    input = _Convert(input, NC4HW4);
    auto outputs = net->onForward({input});
    auto output = _Convert(outputs[0], NCHW);
    output = _Squeeze(output);
    // output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    auto cx = _Gather(output, _Scalar<int>(0));
    auto cy = _Gather(output, _Scalar<int>(1));
    auto w = _Gather(output, _Scalar<int>(2));
    auto h = _Gather(output, _Scalar<int>(3));
    std::vector<int> startvals { 4, 0 };
    auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
    std::vector<int> sizevals { -1, -1 };
    auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
    auto probs = _Slice(output, start, size);
    // [cx, cy, w, h] -> [y0, x0, y1, x1]
    auto x0 = cx - w * _Const(0.5);
    auto y0 = cy - h * _Const(0.5);
    auto x1 = cx + w * _Const(0.5);
    auto y1 = cy + h * _Const(0.5);
    auto boxes = _Stack({x0, y0, x1, y1}, 1);
    auto scores = _ReduceMax(probs, {0});
    auto ids = _ArgMax(probs, 0);
    auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
    auto result_ptr = result_ids->readMap<int>();
    auto box_ptr = boxes->readMap<float>();
    auto ids_ptr = ids->readMap<int>();
    auto score_ptr = scores->readMap<float>();
    for (int i = 0; i < 100; i++) {
        auto idx = result_ptr[i];
        if (idx < 0) break;
        auto x0 = box_ptr[idx * 4 + 0] * scale;
        auto y0 = box_ptr[idx * 4 + 1] * scale;
        auto x1 = box_ptr[idx * 4 + 2] * scale;
        auto y1 = box_ptr[idx * 4 + 3] * scale;
        auto class_idx = ids_ptr[idx];
        auto score = score_ptr[idx];
        rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
    }
    if (imwrite("res.jpg", original_image)) {
        MNN_PRINT("result image write to `res.jpg`.\n");
    }
    rtmgr->updateCache();
    return 0;
}

Resumo

Neste guia, apresentamos como exportar o modelo Ultralytics YOLO11 para o MNN e utilizar o MNN para inferência.

Para mais informações sobre a utilização, consulte a documentação do MNN.

FAQ

Como é que exporto os modelos Ultralytics YOLO11 para o formato MNN?

Para exportar o seu modelo Ultralytics YOLO11 para o formato MNN, siga estes passos:

Exportação

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True)  # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True)  # creates 'yolo11n.mnn' with int8 weight
yolo export model=yolo11n.pt format=mnn            # creates 'yolo11n.mnn' with fp32 weight
yolo export model=yolo11n.pt format=mnn half=True  # creates 'yolo11n.mnn' with fp16 weight
yolo export model=yolo11n.pt format=mnn int8=True  # creates 'yolo11n.mnn' with int8 weight

Para opções de exportação detalhadas, consulte a página Exportar na documentação.

Como é que faço previsões com um modelo YOLO11 MNN exportado?

Para efetuar previsões com um modelo YOLO11 MNN exportado, utilize o predict da classe YOLO .

Prever

from ultralytics import YOLO

# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")

# Export to MNN format
results = mnn_model("https://ultralytics.com/images/bus.jpg")  # predict with `fp32`
results = mnn_model("https://ultralytics.com/images/bus.jpg", half=True)  # predict with `fp16` if device support

for result in results:
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'              # predict with `fp32`
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True  # predict with `fp16` if device support

Que plataformas são suportadas pelo MNN?

O MNN é versátil e suporta várias plataformas:

  • Telemóvel: Android, iOS, Harmony.
  • Sistemas incorporados e dispositivos IoT: Dispositivos como o Raspberry Pi e o NVIDIA Jetson.
  • Desktop e servidores: Linux, Windows e macOS.

Como posso implementar os modelos Ultralytics YOLO11 MNN em dispositivos móveis?

Para implementar os seus modelos YOLO11 em dispositivos móveis:

  1. Construir para Android: Seguir o MNN Android.
  2. Construir para iOS: Seguir o MNN iOS.
  3. Construir para a Harmonia: Seguir o MNN Harmony.
📅C riado há 1 mês ✏️ Atualizado há 1 mês

Comentários