Saltar para o conteúdo

RT-DETR da Baidu: um detetor de objectos em tempo real baseado no transformador de visão

Visão geral

O Real-Time Detection Transformer (RT-DETR), desenvolvido pela Baidu, é um detetor de objectos de ponta a ponta que proporciona um desempenho em tempo real, mantendo uma elevada precisão. Baseia-se na ideia de DETR (a estrutura sem NMS), introduzindo entretanto uma espinha dorsal baseada em conv e um codificador híbrido eficiente para ganhar velocidade em tempo real. RT-DETR processa eficazmente caraterísticas multiescala, dissociando a interação intra-escala e a fusão inter-escala. O modelo é altamente adaptável, suportando um ajuste flexível da velocidade de inferência utilizando diferentes camadas de descodificadores sem reciclagem. RT-DETR destaca-se em backends acelerados como CUDA com TensorRT, superando muitos outros detectores de objectos em tempo real.



Ver: Transformador de deteção em tempo real (RT-DETR)

Imagem de exemplo de modelo Visão geral da Baidu RT-DETR. O diagrama de arquitetura do modelo RT-DETR mostra as três últimas fases da espinha dorsal {S3, S4, S5} como entrada para o codificador. O codificador híbrido eficiente transforma as caraterísticas multiescala numa sequência de caraterísticas de imagem através da interação de caraterísticas intra-escala (AIFI) e do módulo de fusão de caraterísticas inter-escala (CCFM). A seleção de consulta consciente de IoU é utilizada para selecionar um número fixo de caraterísticas de imagem para servir como consultas de objeto iniciais para o descodificador. Finalmente, o descodificador com cabeças de previsão auxiliares optimiza iterativamente as consultas de objectos para gerar caixas e pontuações de confiança (fonte).

Caraterísticas principais

  • Codificador híbrido eficiente: O RT-DETR da Baidu utiliza um codificador híbrido eficiente que processa caraterísticas de várias escalas, dissociando a interação intra-escala e a fusão entre escalas. Este design único baseado em Transformadores de Visão reduz os custos computacionais e permite a deteção de objectos em tempo real.
  • Seleção de consultas com conhecimento da IoU: O RT-DETR da Baidu melhora a inicialização da consulta de objectos utilizando a seleção de consultas com conhecimento da IoU. Isto permite que o modelo se concentre nos objectos mais relevantes na cena, melhorando a precisão da deteção.
  • Velocidade de inferência adaptável: O RT-DETR da Baidu suporta ajustes flexíveis da velocidade de inferência, utilizando diferentes camadas de descodificadores sem necessidade de reciclagem. Esta adaptabilidade facilita a aplicação prática em vários cenários de deteção de objectos em tempo real.

Modelos pré-treinados

A API Ultralytics Python fornece modelos pré-treinados PaddlePaddle RT-DETR com diferentes escalas:

  • RT-DETR-L: 53,0% de PA no COCO val2017, 114 FPS no T4 GPU
  • RT-DETR-X: 54,8% de PA no COCO val2017, 74 FPS no T4 GPU

Exemplos de utilização

Este exemplo fornece exemplos simples de treinamento e inferência em RT-DETR . Para obter documentação completa sobre estes e outros modos, consulte as páginas de documentação Prever, Treinar, Val e Exportar.

Exemplo

from ultralytics import RTDETR

# Load a COCO-pretrained RT-DETR-l model
model = RTDETR("rtdetr-l.pt")

# Display model information (optional)
model.info()

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
# Load a COCO-pretrained RT-DETR-l model and train it on the COCO8 example dataset for 100 epochs
yolo train model=rtdetr-l.pt data=coco8.yaml epochs=100 imgsz=640

# Load a COCO-pretrained RT-DETR-l model and run inference on the 'bus.jpg' image
yolo predict model=rtdetr-l.pt source=path/to/bus.jpg

Tarefas e modos suportados

Esta tabela apresenta os tipos de modelos, os pesos pré-treinados específicos, as tarefas suportadas por cada modelo e os vários modos(Train, Val, Predict, Export) suportados, indicados por emojis ✅.

Tipo de modelo Pesos pré-treinados Tarefas suportadas Inferência Validação Formação Exportação
RT-DETR Grande rtdetr-l.pt Deteção de objectos
RT-DETR Extra-grande rtdetr-x.pt Deteção de objectos

Citações e agradecimentos

Se utilizar o RT-DETR da Baidu no seu trabalho de investigação ou desenvolvimento, cite o artigo original:

@misc{lv2023detrs,
      title={DETRs Beat YOLOs on Real-time Object Detection},
      author={Wenyu Lv and Shangliang Xu and Yian Zhao and Guanzhong Wang and Jinman Wei and Cheng Cui and Yuning Du and Qingqing Dang and Yi Liu},
      year={2023},
      eprint={2304.08069},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Gostaríamos de agradecer à Baidu e à equipa PaddlePaddle pela criação e manutenção deste valioso recurso para a comunidade da visão computacional. A sua contribuição para o campo com o desenvolvimento do detetor de objectos em tempo real baseado em Vision Transformers, RT-DETR, é muito apreciada.

FAQ

O que é o modelo RT-DETR do Baidu e como funciona?

O RT-DETR (Real-Time Detection Transformer) da Baidu é um detetor avançado de objectos em tempo real, construído com base na arquitetura do Vision Transformer. Processa eficazmente caraterísticas multiescala, dissociando a interação intra-escala e a fusão inter-escala através do seu eficiente codificador híbrido. Ao empregar uma seleção de consulta consciente da IoU, o modelo concentra-se nos objectos mais relevantes, aumentando a precisão da deteção. A sua velocidade de inferência adaptável, conseguida através do ajuste das camadas do descodificador sem reciclagem, torna o RT-DETR adequado para vários cenários de deteção de objectos em tempo real. Saiba mais sobre os recursos do RT-DETR aqui.

Como posso utilizar os modelos RT-DETR pré-treinados fornecidos por Ultralytics?

Pode tirar partido da API Ultralytics Python para utilizar modelos pré-treinados PaddlePaddle RT-DETR . Por exemplo, para carregar um modelo RT-DETR-l pré-treinado no COCO val2017 e obter um FPS elevado no T4 GPU, pode utilizar o seguinte exemplo:

Exemplo

from ultralytics import RTDETR

# Load a COCO-pretrained RT-DETR-l model
model = RTDETR("rtdetr-l.pt")

# Display model information (optional)
model.info()

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
# Load a COCO-pretrained RT-DETR-l model and train it on the COCO8 example dataset for 100 epochs
yolo train model=rtdetr-l.pt data=coco8.yaml epochs=100 imgsz=640

# Load a COCO-pretrained RT-DETR-l model and run inference on the 'bus.jpg' image
yolo predict model=rtdetr-l.pt source=path/to/bus.jpg

Por que razão devo escolher o RT-DETR da Baidu em vez de outros detectores de objectos em tempo real?

O RT-DETR da Baidu destaca-se pelo seu eficiente codificador híbrido e pela seleção de consultas com consciência da IoU, que reduzem drasticamente os custos computacionais, mantendo uma elevada precisão. A sua capacidade única de ajustar a velocidade de inferência através da utilização de diferentes camadas de descodificador sem necessidade de reciclagem acrescenta uma flexibilidade significativa. Isto torna-o particularmente vantajoso para aplicações que requerem um desempenho em tempo real em backends acelerados como CUDA com TensorRT, superando muitos outros detectores de objectos em tempo real.

Como é que o RT-DETR suporta uma velocidade de inferência adaptável para diferentes aplicações em tempo real?

O RT-DETR da Baidu permite ajustes flexíveis da velocidade de inferência, utilizando diferentes camadas de descodificadores sem necessidade de reciclagem. Esta adaptabilidade é crucial para escalar o desempenho em várias tarefas de deteção de objectos em tempo real. Quer necessite de um processamento mais rápido para necessidades de menor precisão ou de detecções mais lentas e precisas, o RT-DETR pode ser adaptado para satisfazer os seus requisitos específicos.

Posso utilizar os modelos RT-DETR com outros modos Ultralytics , tais como formação, validação e exportação?

Sim, os modelos RT-DETR são compatíveis com vários modos Ultralytics , incluindo formação, validação, previsão e exportação. Pode consultar a respectiva documentação para obter instruções detalhadas sobre como utilizar estes modos: Treinar, Validar, Prever e Exportar. Isto assegura um fluxo de trabalho abrangente para o desenvolvimento e implementação das suas soluções de deteção de objectos.

📅C riado há 1 ano ✏️ Atualizado há 2 meses

Comentários