Перейти к содержанию

Набор данных COCO128

Введение

Ultralytics COCO128 - это небольшой, но универсальный набор данных для обнаружения объектов, состоящий из первых 128 изображений из набора COCO train 2017. Этот набор данных идеально подходит для тестирования и отладки моделей обнаружения объектов, а также для экспериментов с новыми подходами к обнаружению. 128 изображений достаточно малы, чтобы ими можно было легко управлять, но при этом достаточно разнообразны, чтобы проверить обучающие конвейеры на наличие ошибок и послужить проверкой на вменяемость перед обучением более крупных наборов данных.



Смотреть: Ultralytics Обзор набора данных COCO

Этот набор данных предназначен для использования с Ultralytics HUB и YOLO11.

Набор данных YAML

Для определения конфигурации набора данных используется файл YAML (Yet Another Markup Language). Он содержит информацию о путях, классах и другую необходимую информацию о наборе данных. В случае с набором данных COCO128 файл coco128.yaml файл хранится по адресу https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128.yaml.

ultralytics.yaml

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip

Использование

Чтобы обучить модель YOLO11n на наборе данных COCO128 в течение 100 эпох при размере изображения 640, можно использовать следующие фрагменты кода. Полный список доступных аргументов см. на странице "Обучение модели".

Пример поезда

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640

Образцы изображений и аннотаций

Вот несколько примеров изображений из набора данных COCO128 с соответствующими аннотациями:

Образец изображения из набора данных

  • Мозаичное изображение: Это изображение демонстрирует обучающую партию, состоящую из мозаичных изображений набора данных. Мозаика - это техника, используемая в процессе обучения, которая объединяет несколько изображений в одно, чтобы увеличить разнообразие объектов и сцен в каждой обучающей партии. Это помогает улучшить способность модели к обобщению для различных размеров объектов, соотношения сторон и контекста.

Этот пример демонстрирует разнообразие и сложность изображений в наборе данных COCO128 и преимущества использования мозаики в процессе обучения.

Цитаты и благодарности

Если вы используете набор данных COCO в своих исследованиях или разработках, пожалуйста, ссылайтесь на следующий документ:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Мы хотели бы выразить благодарность консорциуму COCO за создание и поддержку этого ценного ресурса для сообщества компьютерного зрения. Более подробную информацию о наборе данных COCO и его создателях можно найти на сайте набора данных COCO.

ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ

Для чего используется набор данных Ultralytics COCO128?

Набор данных Ultralytics COCO128 - это компактное подмножество, содержащее первые 128 изображений из набора данных COCO train 2017. В первую очередь он используется для тестирования и отладки моделей обнаружения объектов, экспериментов с новыми подходами к обнаружению и проверки обучающих конвейеров перед масштабированием на большие наборы данных. Благодаря удобному размеру он идеально подходит для быстрых итераций и в то же время достаточно разнообразен, чтобы быть значимым тестовым примером.

Как обучить модель YOLO11 с помощью набора данных COCO128?

Чтобы обучить модель YOLO11 на наборе данных COCO128, вы можете использовать команды Python или CLI . Вот как это делается:

from ultralytics import YOLO

    # Load a pretrained model
    model = YOLO("yolo11n.pt")

    # Train the model
    results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
    ```

=== "CLI"

`bash
    yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640
    `

For more training options and parameters, refer to the [Training](../../modes/train.md) documentation.

### What are the benefits of using mosaic augmentation with COCO128?

Mosaic augmentation, as shown in the sample images, combines multiple training images into a single composite image. This technique offers several benefits when training with COCO128:

- Increases the variety of objects and contexts within each training batch
- Improves model generalization across different object sizes and aspect ratios
- Enhances detection performance for objects at various scales
- Maximizes the utility of a small dataset by creating more diverse training samples

This technique is particularly valuable for smaller datasets like COCO128, helping models learn more robust features from limited data.

### How does COCO128 compare to other COCO dataset variants?

COCO128 (128 images) sits between [COCO8](../detect/coco8.md) (8 images) and the full [COCO](../detect/coco.md) dataset (118K+ images) in terms of size:

- **COCO8**: Contains just 8 images (4 train, 4 val) - ideal for quick tests and debugging
- **COCO128**: Contains 128 images - balanced between size and diversity
- **Full COCO**: Contains 118K+ training images - comprehensive but resource-intensive

COCO128 provides a good middle ground, offering more diversity than COCO8 while remaining much more manageable than the full COCO dataset for experimentation and initial model development.

### Can I use COCO128 for tasks other than object detection?

While COCO128 is primarily designed for object detection, the dataset's annotations can be adapted for other computer vision tasks:

- **Instance segmentation**: Using the segmentation masks provided in the annotations
- **Keypoint detection**: For images containing people with keypoint annotations
- **Transfer learning**: As a starting point for fine-tuning models for custom tasks

For specialized tasks like [segmentation](../../tasks/segment.md), consider using purpose-built variants like [COCO8-seg](../segment/coco8-seg.md) which include the appropriate annotations.
📅 Создано 8 дней назад ✏️ Обновлено 0 дней назад

Комментарии