ΠŸΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ содСрТимому

Gain Visual Insights with YOLO11's Integration with TensorBoard

Understanding and fine-tuning computer vision models like Ultralytics' YOLO11 becomes more straightforward when you take a closer look at their training processes. Model training visualization helps with getting insights into the model's learning patterns, performance metrics, and overall behavior. YOLO11's integration with TensorBoard makes this process of visualization and analysis easier and enables more efficient and informed adjustments to the model.

This guide covers how to use TensorBoard with YOLO11. You'll learn about various visualizations, from tracking metrics to analyzing model graphs. These tools will help you understand your YOLO11 model's performance better.

TensorBoard

ΠžΠ±Π·ΠΎΡ€ Tensorboard

TensorBoard, TensorFlow's visualization toolkit, is essential for machine learning experimentation. TensorBoard features a range of visualization tools, crucial for monitoring machine learning models. These tools include tracking key metrics like loss and accuracy, visualizing model graphs, and viewing histograms of weights and biases over time. It also provides capabilities for projecting embeddings to lower-dimensional spaces and displaying multimedia data.

YOLO11 Training with TensorBoard

Using TensorBoard while training YOLO11 models is straightforward and offers significant benefits.

Установка

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π½ΡƒΠΆΠ½Ρ‹ΠΉ ΠΏΠ°ΠΊΠ΅Ρ‚, Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈ:

Установка

# Install the required package for YOLO11 and Tensorboard
pip install ultralytics

TensorBoard is conveniently pre-installed with YOLO11, eliminating the need for additional setup for visualization purposes.

For detailed instructions and best practices related to the installation process, be sure to check our YOLO11 Installation guide. While installing the required packages for YOLO11, if you encounter any difficulties, consult our Common Issues guide for solutions and tips.

Настройка TensorBoard для Google Colab

ΠŸΡ€ΠΈ использовании Google Colab Π²Π°ΠΆΠ½ΠΎ Π½Π°ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ TensorBoard ΠΏΠ΅Ρ€Π΅Π΄ Π½Π°Ρ‡Π°Π»ΠΎΠΌ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π°:

Настрой TensorBoard для Google Colab

%load_ext tensorboard
%tensorboard --logdir path/to/runs

ИспользованиС

Before diving into the usage instructions, be sure to check out the range of YOLO11 models offered by Ultralytics. This will help you choose the most appropriate model for your project requirements.

ИспользованиС

from ultralytics import YOLO

# Load a pre-trained model
model = YOLO("yolo11n.pt")

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

Запустив ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π²Ρ‹ΡˆΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΊΠΎΠ΄Π° использования, Ρ‚Ρ‹ моТСшь ΠΎΠΆΠΈΠ΄Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°:

TensorBoard: Start with 'tensorboard --logdir path_to_your_tensorboard_logs', view at http://localhost:6006/

This output indicates that TensorBoard is now actively monitoring your YOLO11 training session. You can access the TensorBoard dashboard by visiting the provided URL (http://localhost:6006/) to view real-time training metrics and model performance. For users working in Google Colab, the TensorBoard will be displayed in the same cell where you executed the TensorBoard configuration commands.

For more information related to the model training process, be sure to check our YOLO11 Model Training guide. If you are interested in learning more about logging, checkpoints, plotting, and file management, read our usage guide on configuration.

Understanding Your TensorBoard for YOLO11 Training

Now, let's focus on understanding the various features and components of TensorBoard in the context of YOLO11 training. The three key sections of the TensorBoard are Time Series, Scalars, and Graphs.

ВрСмСнная сСрия

The Time Series feature in the TensorBoard offers a dynamic and detailed perspective of various training metrics over time for YOLO11 models. It focuses on the progression and trends of metrics across training epochs. Here's an example of what you can expect to see.

ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅

ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ особСнности Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… рядов Π² TensorBoard

  • Π€ΠΈΠ»ΡŒΡ‚Ρ€ΡƒΠΉ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ΠΈ ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»Π΅Π½Π½Ρ‹Π΅ ΠΊΠ°Ρ€Ρ‚ΠΎΡ‡ΠΊΠΈ: Π­Ρ‚ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π» позволяСт ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡΠΌ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ΠΈ ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»ΡΡ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΎΡ‡ΠΊΠΈ для быстрого сравнСния ΠΈ доступа. Π­Ρ‚ΠΎ особСнно ΠΏΠΎΠ»Π΅Π·Π½ΠΎ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΡΡ€Π΅Π΄ΠΎΡ‚ΠΎΡ‡ΠΈΡ‚ΡŒΡΡ Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… аспСктах Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ процСсса.

  • Detailed Metric Cards: Time Series divides metrics into different categories like learning rate (lr), training (train), and validation (val) metrics, each represented by individual cards.

  • ГрафичСскоС ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅: КаТдая ΠΊΠ°Ρ€Ρ‚ΠΎΡ‡ΠΊΠ° Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ "Π’Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ряды" ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ. Π’Π°ΠΊΠΎΠ΅ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠ΅ прСдставлСниС ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ, закономСрности ΠΈΠ»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ Π² Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠΌ процСссС.

  • Π£Π³Π»ΡƒΠ±Π»Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·: Time Series обСспСчиваСт ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ. НапримСр, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ сСгмСнты скорости обучСния, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ измСнСния Π² скорости обучСния Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΠΊΡ€ΠΈΠ²ΡƒΡŽ обучСния ΠΌΠΎΠ΄Π΅Π»ΠΈ.

Importance of Time Series in YOLO11 Training

The Time Series section is essential for a thorough analysis of the YOLO11 model's training progress. It lets you track the metrics in real time to promptly identify and solve issues. It also offers a detailed view of each metrics progression, which is crucial for fine-tuning the model and enhancing its performance.

Бкаляры

Scalars in the TensorBoard are crucial for plotting and analyzing simple metrics like loss and accuracy during the training of YOLO11 models. They offer a clear and concise view of how these metrics evolve with each training epoch, providing insights into the model's learning effectiveness and stability. Here's an example of what you can expect to see.

ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅

ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ особСнности скаляров Π² TensorBoard

  • Π’Π΅Π³ΠΈ Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния (lr): Π­Ρ‚ΠΈ Ρ‚Π΅Π³ΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ скорости обучСния Π² Ρ€Π°Π·Π½Ρ‹Ρ… сСгмСнтах (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, pg0, pg1, pg2). Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ влияСт ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²ΠΊΠ° скорости обучСния Π½Π° процСсс Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ.

  • Π’Π΅Π³ΠΈ ΠœΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ: Бкаляры Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π² сСбя Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ эффСктивности, ΠΊΠ°ΠΊ:

  • Π’Π΅Π³ΠΈ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° (train, val): Π­Ρ‚ΠΈ Ρ‚Π΅Π³ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ для Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€ΠΎΠ² Π΄Π°Π½Π½Ρ‹Ρ…, позволяя провСсти ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ….

Π’Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° скаляров

Observing scalar metrics is crucial for fine-tuning the YOLO11 model. Variations in these metrics, such as spikes or irregular patterns in loss graphs, can highlight potential issues such as overfitting, underfitting, or inappropriate learning rate settings. By closely monitoring these scalars, you can make informed decisions to optimize the training process, ensuring that the model learns effectively and achieves the desired performance.

Π Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ скалярами ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ рядами

Π₯отя ΠΈ скаляры, ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ряды Π² TensorBoard ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для отслСТивания ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ, ΠΎΠ½ΠΈ слуТат Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·Π½Ρ‹ΠΌ цСлям. Бкаляры сосрСдоточСны Π½Π° построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² простых ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ потСря ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, Π² Π²ΠΈΠ΄Π΅ скалярных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Они ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ высокоуровнСвый ΠΎΠ±Π·ΠΎΡ€ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ эти ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ с ΠΊΠ°ΠΆΠ΄ΠΎΠΉ эпохой обучСния. Π’ Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ сСкция Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… рядов TensorBoard ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ прСдставлСниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ Π½Π° Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ шкалС. Он особСнно ΠΏΠΎΠ»Π΅Π·Π΅Π½ для отслСТивания прогрСссии ΠΈ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΉ измСнСния ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, обСспСчивая Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π² спСцифику процСсса обучСния.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ

The Graphs section of the TensorBoard visualizes the computational graph of the YOLO11 model, showing how operations and data flow within the model. It's a powerful tool for understanding the model's structure, ensuring that all layers are connected correctly, and for identifying any potential bottlenecks in data flow. Here's an example of what you can expect to see.

ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅

Graphs are particularly useful for debugging the model, especially in complex architectures typical in deep learning models like YOLO11. They help in verifying layer connections and the overall design of the model.

РСзюмС

This guide aims to help you use TensorBoard with YOLO11 for visualization and analysis of machine learning model training. It focuses on explaining how key TensorBoard features can provide insights into training metrics and model performance during YOLO11 training sessions.

Для Π±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния этих возмоТностСй ΠΈ эффСктивных стратСгий использования Ρ‚Ρ‹ моТСшь ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ ΠΊ ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΏΠΎ TensorBoard Π½Π° сайтС TensorFlow ΠΈ Π² ΠΈΡ… Ρ€Π΅ΠΏΠΎΠ·ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Π½Π° GitHub.

Π₯ΠΎΡ‡Π΅ΡˆΡŒ ΡƒΠ·Π½Π°Ρ‚ΡŒ большС ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… интСграциях Ultralytics? Загляни Π½Π° страницу руководства ΠΏΠΎ интСграциямUltralytics ΠΈ ΡƒΠ·Π½Π°ΠΉ, ΠΊΠ°ΠΊΠΈΠ΅ Π΅Ρ‰Π΅ интСрСсныС возмоТности ΠΆΠ΄ΡƒΡ‚ своСго часа!

Π’ΠžΠŸΠ ΠžΠ‘Π« И ΠžΠ’Π’Π•Π’Π«

What benefits does using TensorBoard with YOLO11 offer?

Using TensorBoard with YOLO11 provides several visualization tools essential for efficient model training:

  • ΠžΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ: ΠžΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°ΠΉ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΎΡ‚Π·Ρ‹Π².
  • Визуализация Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ: Пойми ΠΈ ΠΎΡ‚Π»Π°Π΄ΡŒ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρƒ ΠΌΠΎΠ΄Π΅Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Ρ„ΠΎΠ².
  • Визуализация эмбСддингов: ΠŸΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΠΉ вкраплСния Π² Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ пространства для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания.

These tools enable you to make informed adjustments to enhance your YOLO11 model's performance. For more details on TensorBoard features, check out the TensorFlow TensorBoard guide.

How can I monitor training metrics using TensorBoard when training a YOLO11 model?

To monitor training metrics while training a YOLO11 model with TensorBoard, follow these steps:

  1. Install TensorBoard and YOLO11: Запускай pip install ultralytics Π² состав ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ TensorBoard.
  2. Configure TensorBoard Logging: During the training process, YOLO11 logs metrics to a specified log directory.
  3. ЗапуститС TensorBoard: Запусти TensorBoard с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ tensorboard --logdir path/to/your/tensorboard/logs.

The TensorBoard dashboard, accessible via http://localhost:6006/, provides real-time insights into various training metrics. For a deeper dive into training configurations, visit our YOLO11 Configuration guide.

What kind of metrics can I visualize with TensorBoard when training YOLO11 models?

When training YOLO11 models, TensorBoard allows you to visualize an array of important metrics including:

  • Loss (Training and Validation): ΠŸΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, насколько Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ модСль Π²ΠΎ врСмя обучСния ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ.
  • Accuracy/Precision/Recall: Key performance metrics to evaluate detection accuracy.
  • Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния: ΠžΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°ΠΉ измСнСния скорости обучСния, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ Π΅Π΅ влияниС Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΠΊ.
  • mAP (mean Average Precision): For a comprehensive evaluation of object detection accuracy at various IoU thresholds.

Π­Ρ‚ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ для отслСТивания ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ провСдСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΉ. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎΠ± этих ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠ°Ρ… Ρ‚Ρ‹ найдСшь Π² нашСм руководствС "ΠœΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ".

Can I use TensorBoard in a Google Colab environment for training YOLO11?

Yes, you can use TensorBoard in a Google Colab environment to train YOLO11 models. Here's a quick setup:

Настрой TensorBoard для Google Colab

%load_ext tensorboard
%tensorboard --logdir path/to/runs

Then, run the YOLO11 training script:

from ultralytics import YOLO

# Load a pre-trained model
model = YOLO("yolo11n.pt")

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

TensorBoard will visualize the training progress within Colab, providing real-time insights into metrics like loss and accuracy. For additional details on configuring YOLO11 training, see our detailed YOLO11 Installation guide.


πŸ“… Π‘ΠΎΠ·Π΄Π°Π½ΠΎ 9 мСсяцСв Π½Π°Π·Π°Π΄ ✏️ ОбновлСно 8 Π΄Π½Π΅ΠΉ Π½Π°Π·Π°Π΄

ΠšΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ