Optimizing YOLO11 Inferences with Neural Magic's DeepSparse Engine
When deploying object detection models like Ultralytics YOLO11 on various hardware, you can bump into unique issues like optimization. This is where YOLO11's integration with Neural Magic's DeepSparse Engine steps in. It transforms the way YOLO11 models are executed and enables GPU-level performance directly on CPUs.
This guide shows you how to deploy YOLO11 using Neural Magic's DeepSparse, how to run inferences, and also how to benchmark performance to ensure it is optimized.
Neural Magic'DeepSparse
Neural Magic's DeepSparse is an inference run-time designed to optimize the execution of neural networks on CPUs. It applies advanced techniques like sparsity, pruning, and quantization to dramatically reduce computational demands while maintaining accuracy. DeepSparse offers an agile solution for efficient and scalable neural network execution across various devices.
Benefits of Integrating Neural Magic's DeepSparse with YOLO11
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΡΠ³Π»ΡΠ±Π»ΡΡΡΡΡ Π² ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ YOLOV8 ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ DeepSparse, Π΄Π°Π²Π°ΠΉΡΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ Π² ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ DeepSparse. ΠΠΎΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠ»ΡΡΠ΅Π²ΡΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°:
- Enhanced Inference Speed: Achieves up to 525 FPS (on YOLO11n), significantly speeding up YOLO11's inference capabilities compared to traditional methods.
- Optimized Model Efficiency: Uses pruning and quantization to enhance YOLO11's efficiency, reducing model size and computational requirements while maintaining accuracy.
-
ΠΡΡΠΎΠΊΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ°Ρ : ΠΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ GPU, Π½Π° ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ°Ρ , ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΡ Π±ΠΎΠ»Π΅Π΅ Π΄ΠΎΡΡΡΠΏΠ½ΡΠΉ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ.
-
Streamlined Integration and Deployment: Offers user-friendly tools for easy integration of YOLO11 into applications, including image and video annotation features.
-
Support for Various Model Types: Compatible with both standard and sparsity-optimized YOLO11 models, adding deployment flexibility.
-
ΠΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΠΈ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΡΠ΅ΠΌΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅: Π‘ΠΎΠΊΡΠ°ΡΠ°Π΅Ρ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°ΡΡ ΠΎΠ΄Ρ ΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΡΠ΅ΠΌΠΎΠ΅ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ².
ΠΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Neural Magic'DeepSparse'?
Neural MagicΠ’Π΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Deep Sparse ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ Π½Π΅ΠΉΡΠΎΠ½Π½ΡΡ ΡΠ΅ΡΠ΅ΠΉ. ΠΠ½ ΠΏΠ΅ΡΠ΅Π½ΠΈΠΌΠ°Π΅Ρ Π΄Π²Π° ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΠΌΠΎΠ·Π³Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
-
Sparsity: The process of sparsification involves pruning redundant information from deep learning networks, leading to smaller and faster models without compromising accuracy. This technique reduces the network's size and computational needs significantly.
-
Locality of Reference: DeepSparse ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ, ΡΠ°Π·Π±ΠΈΠ²Π°Ρ ΡΠ΅ΡΡ Π½Π° Tensor ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ. ΠΡΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ Π² Π³Π»ΡΠ±ΠΈΠ½Ρ, ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΡΡ Π² ΠΊΡΡ CPU. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΈΠΌΠΈΡΠΈΡΡΠ΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΠΌΠΎΠ·Π³Π°, ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΊΡΡ CPU.
ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Neural Magic'DeepSparse, ΡΠΈΡΠ°ΠΉ Π² ΠΈΡ Π±Π»ΠΎΠ³Π΅.
Creating A Sparse Version of YOLO11 Trained on a Custom Dataset
SparseZoo, an open-source model repository by Neural Magic, offers a collection of pre-sparsified YOLO11 model checkpoints. With SparseML, seamlessly integrated with Ultralytics, users can effortlessly fine-tune these sparse checkpoints on their specific datasets using a straightforward command-line interface.
Checkout Neural Magic's SparseML YOLO11 documentation for more details.
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅: Π Π°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ YOLOV8 Ρ ΠΏΠΎΠΌΠΎΡΡΡ DeepSparse
Deploying YOLO11 with Neural Magic's DeepSparse involves a few straightforward steps. Before diving into the usage instructions, be sure to check out the range of YOLO11 models offered by Ultralytics. This will help you choose the most appropriate model for your project requirements. Here's how you can get started.
Π¨Π°Π³ 1: Π£ΡΡΠ°Π½ΠΎΠ²ΠΊΠ°
Π§ΡΠΎΠ±Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ ΠΏΠ°ΠΊΠ΅ΡΡ, Π²ΡΠΏΠΎΠ»Π½ΠΈ:
Step 2: Exporting YOLO11 to ONNX Format
DeepSparse Engine requires YOLO11 models in ONNX format. Exporting your model to this format is essential for compatibility with DeepSparse. Use the following command to export YOLO11 models:
ΠΠΊΡΠΏΠΎΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ
ΠΡΠ° ΠΊΠΎΠΌΠ°Π½Π΄Π° ΡΠΎΡ
ΡΠ°Π½ΠΈΡ yolo11n.onnx
ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π° ΡΠ²ΠΎΠΉ Π΄ΠΈΡΠΊ.
Π¨Π°Π³ 3: Π Π°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ ΠΈ Π·Π°ΠΏΡΡΠΊ ΡΠΌΠΎΠ·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΉ
With your YOLO11 model in ONNX format, you can deploy and run inferences using DeepSparse. This can be done easily with their intuitive Python API:
Π Π°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΠ΅ ΠΈ Π·Π°ΠΏΡΡΠΊ ΡΠΌΠΎΠ·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΉ
from deepsparse import Pipeline
# Specify the path to your YOLO11 ONNX model
model_path = "path/to/yolo11n.onnx"
# Set up the DeepSparse Pipeline
yolo_pipeline = Pipeline.create(task="yolov8", model_path=model_path)
# Run the model on your images
images = ["path/to/image.jpg"]
pipeline_outputs = yolo_pipeline(images=images)
Π¨Π°Π³ 4: ΠΠ΅Π½ΡΠΌΠ°ΡΠΊΠΈΠ½Π³ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ
It's important to check that your YOLO11 model is performing optimally on DeepSparse. You can benchmark your model's performance to analyze throughput and latency:
ΠΠ΅Π½ΡΠΌΠ°ΡΠΊΠΈΠ½Π³
Π¨Π°Π³ 5: ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
DeepSparse provides additional features for practical integration of YOLO11 in applications, such as image annotation and dataset evaluation.
ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΏΠΎΠ»Π½ΠΈΠ² ΠΊΠΎΠΌΠ°Π½Π΄Ρ annotate, ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π΅ΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈ ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ Π°Π½Π½ΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΠΌΠΊΠ°ΠΌΠΈ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ. ΠΠ½Π½ΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΎ Π² ΠΏΠ°ΠΏΠΊΠ΅ annotation-results. ΠΡΠΎ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠ·Π΄Π°ΡΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ².
After running the eval command, you will receive detailed output metrics such as precision, recall, and mAP (mean Average Precision). This provides a comprehensive view of your model's performance on the dataset. This functionality is particularly useful for fine-tuning and optimizing your YOLO11 models for specific use cases, ensuring high accuracy and efficiency.
Π Π΅Π·ΡΠΌΠ΅
This guide explored integrating Ultralytics' YOLO11 with Neural Magic's DeepSparse Engine. It highlighted how this integration enhances YOLO11's performance on CPU platforms, offering GPU-level efficiency and advanced neural network sparsity techniques.
For more detailed information and advanced usage, visit Neural Magic's DeepSparse documentation. Also, check out Neural Magic's documentation on the integration with YOLO11 here and watch a great session on it here.
Additionally, for a broader understanding of various YOLO11 integrations, visit the Ultralytics integration guide page, where you can discover a range of other exciting integration possibilities.
ΠΠΠΠ ΠΠ‘Π« Π ΠΠ’ΠΠΠ’Π«
What is Neural Magic's DeepSparse Engine and how does it optimize YOLO11 performance?
Neural Magic's DeepSparse Engine is an inference runtime designed to optimize the execution of neural networks on CPUs through advanced techniques such as sparsity, pruning, and quantization. By integrating DeepSparse with YOLO11, you can achieve GPU-like performance on standard CPUs, significantly enhancing inference speed, model efficiency, and overall performance while maintaining accuracy. For more details, check out the Neural Magic's DeepSparse section.
How can I install the needed packages to deploy YOLO11 using Neural Magic's DeepSparse?
Installing the required packages for deploying YOLO11 with Neural Magic's DeepSparse is straightforward. You can easily install them using the CLI. Here's the command you need to run:
Once installed, follow the steps provided in the Installation section to set up your environment and start using DeepSparse with YOLO11.
How do I convert YOLO11 models to ONNX format for use with DeepSparse?
To convert YOLO11 models to the ONNX format, which is required for compatibility with DeepSparse, you can use the following CLI command:
This command will export your YOLO11 model (yolo11n.pt
) Π² ΡΠΎΡΠΌΠ°Ρ (yolo11n.onnx
), ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π²ΠΈΠΆΠΊΠΎΠΌ DeepSparse Engine. ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎΠ± ΡΠΊΡΠΏΠΎΡΡΠ΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ Π Π°Π·Π΄Π΅Π» "ΠΠΊΡΠΏΠΎΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.
How do I benchmark YOLO11 performance on the DeepSparse Engine?
Benchmarking YOLO11 performance on DeepSparse helps you analyze throughput and latency to ensure your model is optimized. You can use the following CLI command to run a benchmark:
deepsparse.benchmark model_path="path/to/yolo11n.onnx" --scenario=sync --input_shapes="[1,3,640,640]"
ΠΡΠ° ΠΊΠΎΠΌΠ°Π½Π΄Π° ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΡ ΡΠ΅Π±Π΅ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ ΠΎΠ± ΡΡΠΎΠΌ ΡΠΈΡΠ°ΠΉ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ "ΠΠ΅Π½ΡΠΌΠ°ΡΠΊΠΈΠ½Π³ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ".
Why should I use Neural Magic's DeepSparse with YOLO11 for object detection tasks?
Integrating Neural Magic's DeepSparse with YOLO11 offers several benefits:
- Enhanced Inference Speed: Achieves up to 525 FPS, significantly speeding up YOLO11's capabilities.
- ΠΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ: ΠΡΠΏΠΎΠ»ΡΠ·ΡΠΉ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΡΠ°Π·ΡΠ΅ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ, ΠΎΠ±ΡΠ΅Π·ΠΊΠΈ ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠΎΠ±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΠ°Π·ΠΌΠ΅Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΠΈ, ΡΠΎΡ ΡΠ°Π½ΠΈΠ² ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠΎΡΠ½ΠΎΡΡΡ.
- ΠΡΡΠΎΠΊΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ°Ρ : ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ GPU-ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΠΎΠΌ CPU ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠΈ.
- ΠΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΡ: Π£Π΄ΠΎΠ±Π½ΡΠ΅ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ Π΄Π»Ρ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ.
- Flexibility: Supports both standard and sparsity-optimized YOLO11 models.
- ΠΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ: Π‘ΠΎΠΊΡΠ°ΡΠ°Π΅Ρ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ°ΡΡ ΠΎΠ΄Ρ Π·Π° ΡΡΠ΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΡΡΡΠΎΠ².
For a deeper dive into these advantages, visit the Benefits of Integrating Neural Magic's DeepSparse with YOLO11 section.