İçeriğe geç

Object Blurring using Ultralytics YOLO11 🚀

Nesne Bulanıklaştırma Nedir?

Object blurring with Ultralytics YOLO11 involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLO11 model capabilities to identify and manipulate objects within a given scene.



İzle: Object Blurring using Ultralytics YOLO11

Nesne Bulanıklaştırmanın Avantajları?

  • Gizlilik Koruması: Nesne bulanıklaştırma, görüntü veya videolardaki hassas veya kişisel olarak tanımlanabilir bilgileri gizleyerek gizliliği korumak için etkili bir araçtır.
  • Selective Focus: YOLO11 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information.
  • Real-time Processing: YOLO11's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments.

Object Blurring using YOLO11 Example

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolo11n.pt")
names = model.names

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Blur ratio
blur_ratio = 50

# Video writer
video_writer = cv2.VideoWriter("object_blurring_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0, show=False)
    boxes = results[0].boxes.xyxy.cpu().tolist()
    clss = results[0].boxes.cls.cpu().tolist()
    annotator = Annotator(im0, line_width=2, example=names)

    if boxes is not None:
        for box, cls in zip(boxes, clss):
            annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])

            obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
            blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio))

            im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = blur_obj

    cv2.imshow("ultralytics", im0)
    video_writer.write(im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()

Argümanlar model.predict

Tartışma Tip Varsayılan Açıklama
source str 'ultralytics/assets' Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across different types of input.
conf float 0.25 Tespitler için minimum güven eşiğini ayarlar. Bu eşiğin altında güvenle tespit edilen nesneler dikkate alınmayacaktır. Bu değerin ayarlanması yanlış pozitiflerin azaltılmasına yardımcı olabilir.
iou float 0.7 Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates.
imgsz int or tuple 640 Çıkarım için görüntü boyutunu tanımlar. Tek bir tamsayı olabilir 640 for square resizing or a (height, width) tuple. Proper sizing can improve detection accuracy and processing speed.
half bool False Enables half-precision (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy.
device str None Çıkarım için cihazı belirtir (örn, cpu, cuda:0 veya 0). Kullanıcıların CPU, belirli bir GPU veya model yürütme için diğer hesaplama cihazları arasında seçim yapmasına olanak tanır.
max_det int 300 Görüntü başına izin verilen maksimum algılama sayısı. Modelin tek bir çıkarımda tespit edebileceği toplam nesne sayısını sınırlayarak yoğun sahnelerde aşırı çıktıları önler.
vid_stride int 1 Video girişleri için kare atlama. Zamansal çözünürlük pahasına işlemeyi hızlandırmak için videolardaki karelerin atlanmasına izin verir. 1 değeri her kareyi işler, daha yüksek değerler kareleri atlar.
stream_buffer bool False Determines whether to queue incoming frames for video streams. If False, old frames get dropped to accomodate new frames (optimized for real-time applications). If `True', queues new frames in a buffer, ensuring no frames get skipped, but will cause latency if inference FPS is lower than stream FPS.
visualize bool False Çıkarım sırasında model özelliklerinin görselleştirilmesini etkinleştirerek modelin "ne gördüğüne" dair içgörü sağlar. Hata ayıklama ve model yorumlama için kullanışlıdır.
augment bool False Tahminler için test zamanı artırımını (TTA) etkinleştirerek çıkarım hızı pahasına tespit sağlamlığını potansiyel olarak iyileştirir.
agnostic_nms bool False Farklı sınıfların örtüşen kutularını birleştiren, sınıftan bağımsız Maksimum Olmayan Bastırma (NMS) özelliğini etkinleştirir. Sınıf çakışmasının yaygın olduğu çok sınıflı algılama senaryolarında kullanışlıdır.
classes list[int] None Tahminleri bir dizi sınıf kimliğine göre filtreler. Yalnızca belirtilen sınıflara ait tespitler döndürülür. Çok sınıflı algılama görevlerinde ilgili nesnelere odaklanmak için kullanışlıdır.
retina_masks bool False Modelde mevcutsa yüksek çözünürlüklü segmentasyon maskeleri kullanır. Bu, segmentasyon görevleri için maske kalitesini artırarak daha ince ayrıntılar sağlayabilir.
embed list[int] None Specifies the layers from which to extract feature vectors or embeddings. Useful for downstream tasks like clustering or similarity search.

SSS

What is object blurring with Ultralytics YOLO11?

Object blurring with Ultralytics YOLO11 involves automatically detecting and applying a blurring effect to specific objects in images or videos. This technique enhances privacy by concealing sensitive information while retaining relevant visual data. YOLO11's real-time processing capabilities make it suitable for applications requiring immediate privacy protection and selective focus adjustments.

How can I implement real-time object blurring using YOLO11?

To implement real-time object blurring with YOLO11, follow the provided Python example. This involves using YOLO11 for object detection and OpenCV for applying the blur effect. Here's a simplified version:

import cv2

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break

    results = model.predict(im0, show=False)
    for box in results[0].boxes.xyxy.cpu().tolist():
        obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
        im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = cv2.blur(obj, (50, 50))

    cv2.imshow("YOLO11 Blurring", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

What are the benefits of using Ultralytics YOLO11 for object blurring?

Ultralytics YOLO11 offers several advantages for object blurring:

  • Gizlilik Koruması: Hassas veya tanımlanabilir bilgileri etkili bir şekilde gizleyin.
  • Seçici Odaklanma: Temel görsel içeriği koruyarak bulanıklaştırma için belirli nesneleri hedefleyin.
  • Gerçek Zamanlı İşleme: Nesne bulanıklaştırmayı dinamik ortamlarda verimli bir şekilde gerçekleştirin, anlık gizlilik geliştirmeleri için uygundur.

Daha ayrıntılı uygulamalar için nesne bulanıklaştırmanın avantajları bölümüne bakın.

Can I use Ultralytics YOLO11 to blur faces in a video for privacy reasons?

Yes, Ultralytics YOLO11 can be configured to detect and blur faces in videos to protect privacy. By training or using a pre-trained model to specifically recognize faces, the detection results can be processed with OpenCV to apply a blur effect. Refer to our guide on object detection with YOLO11 and modify the code to target face detection.

How does YOLO11 compare to other object detection models like Faster R-CNN for object blurring?

Ultralytics YOLO11 typically outperforms models like Faster R-CNN in terms of speed, making it more suitable for real-time applications. While both models offer accurate detection, YOLO11's architecture is optimized for rapid inference, which is critical for tasks like real-time object blurring. Learn more about the technical differences and performance metrics in our YOLO11 documentation.


📅 Created 9 months ago ✏️ Updated 12 days ago

Yorumlar