─░├žeri─če ge├ž

Ultralytics HUB Çıkarım API'si

Ultralytics HUB ├ç─▒kar─▒m API'si, Ultralytics YOLO ortam─▒n─▒ yerel olarak kurman─▒za ve ayarlaman─▒za gerek kalmadan REST API'miz arac─▒l─▒─č─▒yla ├ž─▒kar─▒m yapman─▒z─▒ sa─člar.

Ultralytics  Ultralytics Inference API kart─▒n─▒ g├Âsteren bir ok ile Model sayfas─▒ i├žindeki Deploy sekmesinin HUB ekran g├Âr├╝nt├╝s├╝


İzle: Ultralytics HUB Çıkarım API'si İzlenecek Yol

Python

Python adresini kullanarak Ultralytics HUB ├ç─▒kar─▒m API'sine eri┼čmek i├žin a┼ča─č─▒daki kodu kullan─▒n:

import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())

Not

De─či┼čtirin MODEL_ID ile istenen model kimli─čini girin, API_KEY ile ger├žek API anahtar─▒n─▒z─▒ ve path/to/image.jpg ├╝zerinde ├ž─▒kar─▒m yapmak istedi─činiz g├Âr├╝nt├╝n├╝n yolunu girin.

cURL

cURL kullanarak Ultralytics HUB ├ç─▒kar─▒m API'sine eri┼čmek i├žin a┼ča─č─▒daki kodu kullan─▒n:

curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"

Not

De─či┼čtirin MODEL_ID ile istenen model kimli─čini girin, API_KEY ile ger├žek API anahtar─▒n─▒z─▒ ve path/to/image.jpg ├╝zerinde ├ž─▒kar─▒m yapmak istedi─činiz g├Âr├╝nt├╝n├╝n yolunu girin.

Arg├╝manlar

Kullan─▒labilir ├ž─▒kar─▒m arg├╝manlar─▒n─▒n tam listesi i├žin a┼ča─č─▒daki tabloya bak─▒n.

Tart─▒┼čma Varsay─▒lan Tip A├ž─▒klama
image image Image file to be used for inference.
url str URL of the image if not passing a file.
size 640 int Size of the input image, valid range is 32 - 1280 pixels.
confidence 0.25 float Confidence threshold for predictions, valid range 0.01 - 1.0.
iou 0.45 float Intersection over Union (IoU) threshold, valid range 0.0 - 0.95.

Yan─▒t

Ultralytics HUB ├ç─▒kar─▒m API'si bir JSON yan─▒t─▒ d├Ând├╝r├╝r.

S─▒n─▒fland─▒rma

S─▒n─▒fland─▒rma Modeli

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-cls.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92
    }
  ]
}

Alg─▒lama

Alg─▒lama Modeli

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      width: 0.4893378019332886,
      height: 0.7437513470649719,
      xcenter: 0.4434437155723572,
      ycenter: 0.5198975801467896
    }
  ]
}

OBB

OBB Modeli

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-obb.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      obb: [
        0.669310450553894,
        0.6247171759605408,
        0.9847468137741089,
        ...
      ]
    }
  ]
}

Segmentasyon

Segmentasyon Modeli

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-seg.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      segment: [0.44140625, 0.15625, 0.439453125, ...]
    }
  ]
}

Pose

Poz Modeli

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-pose.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      keypoints: [
        0.5290805697441101,
        0.20698919892311096,
        1.0,
        0.5263055562973022,
        0.19584226608276367,
        1.0,
        0.5094948410987854,
        0.19120082259178162,
        1.0,
        ...
      ]
    }
  ]
}


Created 2024-01-23, Updated 2024-06-10
Authors: glenn-jocher (7), sergiuwaxmann (2), RizwanMunawar (1), priytosh-tripathi (1)

Yorumlar