Bỏ để qua phần nội dung

Elevating YOLOv8 Đào tạo: Đơn giản hóa quy trình ghi nhật ký của bạn với Comet ML

Ghi nhật ký các chi tiết đào tạo chính như thông số, số liệu, dự đoán hình ảnh và điểm kiểm tra mô hình là điều cần thiết trong học máy — nó giữ cho dự án của bạn minh bạch, tiến độ của bạn có thể đo lường được và kết quả của bạn có thể lặp lại.

Ultralytics YOLOv8 Tích hợp liền mạch với Comet ML, nắm bắt và tối ưu hóa hiệu quả mọi khía cạnh của bạn YOLOv8 Quy trình đào tạo của mô hình phát hiện đối tượng. Trong hướng dẫn này, chúng tôi sẽ đề cập đến quá trình cài đặt, Comet Thiết lập ML, thông tin chi tiết theo thời gian thực, ghi nhật ký tùy chỉnh và sử dụng ngoại tuyến, đảm bảo rằng YOLOv8 Đào tạo được ghi chép kỹ lưỡng và tinh chỉnh để có kết quả vượt trội.

Comet ML

Comet Tổng quan về ML

Comet ML là một nền tảng để theo dõi, so sánh, giải thích và tối ưu hóa các mô hình và thí nghiệm học máy. Nó cho phép bạn ghi lại các số liệu, thông số, phương tiện và hơn thế nữa trong quá trình đào tạo mô hình và theo dõi các thử nghiệm của bạn thông qua giao diện web thẩm mỹ. Comet ML giúp các nhà khoa học dữ liệu lặp lại nhanh hơn, tăng cường tính minh bạch và khả năng tái tạo, đồng thời hỗ trợ phát triển các mô hình sản xuất.

Khai thác sức mạnh của YOLOv8 và Comet ML

Bằng cách kết hợp Ultralytics YOLOv8 với Comet ML, bạn mở khóa một loạt các lợi ích. Chúng bao gồm quản lý thử nghiệm được đơn giản hóa, thông tin chi tiết theo thời gian thực để điều chỉnh nhanh, tùy chọn ghi nhật ký linh hoạt và phù hợp cũng như khả năng ghi nhật ký thử nghiệm ngoại tuyến khi truy cập internet bị hạn chế. Sự tích hợp này cho phép bạn đưa ra quyết định dựa trên dữ liệu, phân tích các chỉ số hiệu suất và đạt được kết quả đặc biệt.

Cài đặt

Để cài đặt các gói cần thiết, hãy chạy:

Cài đặt

# Install the required packages for YOLOv8 and Comet ML
pip install ultralytics comet_ml torch torchvision

Cấu hình Comet ML

After installing the required packages, you'll need to sign up, get a Comet API Key, and configure it.

Cấu hình Comet ML

# Set your Comet Api Key
export COMET_API_KEY=<Your API Key>

Sau đó, bạn có thể khởi tạo Comet dự án. Comet sẽ tự động phát hiện khóa API và tiến hành thiết lập.

import comet_ml

comet_ml.init(project_name="comet-example-yolov8-coco128")

Nếu bạn đang sử dụng sổ ghi chép Google Colab, mã ở trên sẽ nhắc bạn nhập khóa API để khởi tạo.

Sử dụng

Trước khi đi sâu vào hướng dẫn sử dụng, hãy chắc chắn kiểm tra phạm vi của YOLOv8 Mô hình được cung cấp bởi Ultralytics. Điều này sẽ giúp bạn chọn mô hình phù hợp nhất cho yêu cầu dự án của bạn.

Sử dụng

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")

# train the model
results = model.train(
    data="coco8.yaml",
    project="comet-example-yolov8-coco128",
    batch=32,
    save_period=1,
    save_json=True,
    epochs=3,
)

Sau khi chạy mã đào tạo, Comet ML sẽ tạo một thử nghiệm trong Comet Không gian làm việc để theo dõi quá trình chạy tự động. Sau đó, bạn sẽ được cung cấp một liên kết để xem nhật ký chi tiết của bạn YOLOv8 Quy trình đào tạo của người mẫu .

Comet tự động ghi lại dữ liệu sau mà không cần cấu hình bổ sung: các chỉ số như mAP và mất mát, siêu tham số, điểm kiểm tra mô hình, ma trận nhầm lẫn tương tác và dự đoán hộp giới hạn hình ảnh.

Hiểu hiệu suất mô hình của bạn với Comet Trực quan hóa ML

Let's dive into what you'll see on the Comet ML dashboard once your YOLOv8 model begins training. The dashboard is where all the action happens, presenting a range of automatically logged information through visuals and statistics. Here's a quick tour:

Bảng thử nghiệm

Phần bảng thử nghiệm của Comet Bảng điều khiển ML sắp xếp và trình bày các lần chạy khác nhau và các chỉ số của chúng, chẳng hạn như mất mặt nạ phân đoạn, mất lớp, độ chính xác và độ chính xác trung bình trung bình.

Comet Tổng quan về ML

Metrics

Trong phần số liệu, bạn cũng có tùy chọn kiểm tra các chỉ số ở định dạng bảng, được hiển thị trong ngăn chuyên dụng như minh họa ở đây.

Comet Tổng quan về ML

Ma trận nhầm lẫn tương tác

Ma trận nhầm lẫn, được tìm thấy trong tab Ma trận nhầm lẫn, cung cấp một cách tương tác để đánh giá độ chính xác phân loại của mô hình. Nó nêu chi tiết các dự đoán chính xác và không chính xác, cho phép bạn hiểu điểm mạnh và điểm yếu của mô hình.

Comet Tổng quan về ML

Số liệu hệ thống

Comet ML ghi lại các số liệu hệ thống để giúp xác định bất kỳ tắc nghẽn nào trong quá trình đào tạo. Nó bao gồm các số liệu như sử dụng GPU, sử dụng bộ nhớ GPU, sử dụng CPU và sử dụng RAM. Đây là những điều cần thiết để giám sát hiệu quả sử dụng tài nguyên trong quá trình đào tạo mô hình.

Comet Tổng quan về ML

Tùy biến Comet Ghi nhật ký ML

Comet ML cung cấp sự linh hoạt để tùy chỉnh hành vi ghi nhật ký của nó bằng cách thiết lập các biến môi trường. Các cấu hình này cho phép bạn điều chỉnh Comet ML theo nhu cầu và sở thích cụ thể của bạn. Dưới đây là một số tùy chọn tùy chỉnh hữu ích:

Dự đoán hình ảnh ghi nhật ký

Bạn có thể kiểm soát số lần dự đoán hình ảnh Comet Nhật ký ML trong quá trình thử nghiệm của bạn. Theo mặc định, Comet ML ghi lại 100 dự đoán hình ảnh từ bộ xác thực. Tuy nhiên, bạn có thể thay đổi con số này để phù hợp hơn với yêu cầu của mình. Ví dụ: để ghi lại 200 dự đoán hình ảnh, hãy sử dụng mã sau:

import os

os.environ["COMET_MAX_IMAGE_PREDICTIONS"] = "200"

Khoảng thời gian ghi nhật ký hàng loạt

Comet ML cho phép bạn chỉ định tần suất các lô dự đoán hình ảnh được ghi lại. Các COMET_EVAL_BATCH_LOGGING_INTERVAL Biến môi trường kiểm soát tần số này. Cài đặt mặc định là 1, ghi lại các dự đoán từ mỗi lô xác thực. Bạn có thể điều chỉnh giá trị này để ghi nhật ký dự đoán ở một khoảng thời gian khác. Ví dụ: đặt nó thành 4 sẽ ghi lại các dự đoán từ mỗi đợt thứ tư.

import os

os.environ["COMET_EVAL_BATCH_LOGGING_INTERVAL"] = "4"

Vô hiệu hóa ghi nhật ký ma trận nhầm lẫn

Trong một số trường hợp, bạn có thể không muốn ghi lại ma trận nhầm lẫn từ bộ xác thực của mình sau mỗi kỷ nguyên. Bạn có thể tắt tính năng này bằng cách đặt COMET_EVAL_LOG_CONFUSION_MATRIX biến môi trường thành "false". Ma trận nhầm lẫn sẽ chỉ được ghi lại một lần, sau khi đào tạo hoàn tất.

import os

os.environ["COMET_EVAL_LOG_CONFUSION_MATRIX"] = "false"

Ghi nhật ký ngoại tuyến

Nếu bạn thấy mình trong tình huống truy cập internet bị hạn chế, Comet ML cung cấp tùy chọn ghi nhật ký ngoại tuyến. Bạn có thể đặt COMET_MODE biến môi trường thành "ngoại tuyến" để bật tính năng này. Dữ liệu thử nghiệm của bạn sẽ được lưu cục bộ trong thư mục mà sau này bạn có thể tải lên Comet ML khi có kết nối internet.

import os

os.environ["COMET_MODE"] = "offline"

Tóm tắt

Hướng dẫn này đã hướng dẫn bạn cách tích hợp Comet ML với Ultralytics' YOLOv8. Từ cài đặt đến tùy chỉnh, bạn đã học cách hợp lý hóa việc quản lý thử nghiệm, có được thông tin chuyên sâu theo thời gian thực và điều chỉnh ghi nhật ký theo nhu cầu của dự án.

Khám phá Comet Tài liệu chính thức của ML để biết thêm thông tin chi tiết về việc tích hợp với YOLOv8.

Hơn nữa, nếu bạn đang muốn đi sâu hơn vào các ứng dụng thực tế của YOLOv8, đặc biệt đối với các tác vụ phân đoạn hình ảnh, hướng dẫn chi tiết này về Tinh chỉnh YOLOv8 với Comet ML cung cấp thông tin chi tiết có giá trị và hướng dẫn từng bước để nâng cao hiệu suất mô hình của bạn.

Ngoài ra, để khám phá các tích hợp thú vị khác với Ultralytics, hãy xem trang hướng dẫn tích hợp, nơi cung cấp nhiều tài nguyên và thông tin.



Created 2023-11-16, Updated 2024-06-02
Authors: glenn-jocher (9), AyushExel (1), abirami-vina (1)

Ý kiến