YOLOv5 Bắt đầu 🚀 nhanh
Embark on your journey into the dynamic realm of real-time object detection with YOLOv5! This guide is crafted to serve as a comprehensive starting point for AI enthusiasts and professionals aiming to master YOLOv5. From initial setup to advanced training techniques, we've got you covered. By the end of this guide, you'll have the knowledge to implement YOLOv5 into your projects confidently. Let's ignite the engines and soar into YOLOv5!
Cài đặt
Chuẩn bị khởi chạy bằng cách nhân bản kho lưu trữ và thiết lập môi trường. Điều này đảm bảo rằng tất cả các yêu cầu cần thiết được cài đặt. Kiểm tra xem bạn có Python>=3.8.0 và PyTorch>=1,8 sẵn sàng cất cánh.
git clone https://github.com/ultralytics/yolov5 # clone repository
cd yolov5
pip install -r requirements.txt # install dependencies
Inference with PyTorch Hub
Trải nghiệm sự đơn giản của YOLOv5 PyTorch Suy luận trung tâm , trong đó các mô hình được tải xuống liền mạch từ phiên bản mới nhất YOLOv5 phát hành.
import torch
# Model loading
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # Can be 'yolov5n' - 'yolov5x6', or 'custom'
# Inference on images
img = "https://ultralytics.com/images/zidane.jpg" # Can be a file, Path, PIL, OpenCV, numpy, or list of images
# Run inference
results = model(img)
# Display results
results.print() # Other options: .show(), .save(), .crop(), .pandas(), etc.
Suy luận với detect.py
Khai thác detect.py
để suy luận linh hoạt trên nhiều nguồn khác nhau. Nó tự động tìm nạp Mô hình từ mới nhất YOLOv5 phát hành và lưu kết quả một cách dễ dàng.
python detect.py --weights yolov5s.pt --source 0 # webcam
image.jpg # image
video.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Đào tạo
Nhân rộng YOLOv5 COCO điểm chuẩn với các hướng dẫn dưới đây. Sự cần thiết Mô hình và Datasets được kéo trực tiếp từ mới nhất YOLOv5 phát hành. Đào tạo YOLOv5n / s / m / l / x trên V100 GPU thường mất 1/2/4/6/8 ngày tương ứng (lưu ý rằng Đa-GPU Thiết lập hoạt động nhanh hơn). Tối đa hóa hiệu suất bằng cách sử dụng cao nhất có thể --batch-size
hoặc sử dụng --batch-size -1
Đối với YOLOv5 Tự động hàng loạt feature. The following batch sizes are ideal for V100-16GB GPUs.
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
To conclude, YOLOv5 is not only a state-of-the-art tool for object detection but also a testament to the power of machine learning in transforming the way we interact with the world through visual understanding. As you progress through this guide and begin applying YOLOv5 to your projects, remember that you are at the forefront of a technological revolution, capable of achieving remarkable feats. Should you need further insights or support from fellow visionaries, you're invited to our GitHub repository home to a thriving community of developers and researchers. Keep exploring, keep innovating, and enjoy the marvels of YOLOv5. Happy detecting! 🌠🔍