انتقل إلى المحتوى

طمس الأجسام باستخدام Ultralytics YOLO11 🚀

ما هو تعتيم الكائن؟

Object blurring with Ultralytics YOLO11 involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLO11 model capabilities to identify and manipulate objects within a given scene.



شاهد: Object Blurring using Ultralytics YOLO11

مزايا طمس الكائن؟

  • حماية الخصوصية: يعد تعتيم الكائن أداة فعالة لحماية الخصوصية عن طريق إخفاء المعلومات الحساسة أو الشخصية في الصور أو مقاطع الفيديو.
  • Selective Focus: YOLO11 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information.
  • Real-time Processing: YOLO11's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments.

مثال على طمس الكائنات باستخدام YOLO11

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolo11n.pt")
names = model.names

cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Blur ratio
blur_ratio = 50

# Video writer
video_writer = cv2.VideoWriter("object_blurring_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0, show=False)
    boxes = results[0].boxes.xyxy.cpu().tolist()
    clss = results[0].boxes.cls.cpu().tolist()
    annotator = Annotator(im0, line_width=2, example=names)

    if boxes is not None:
        for box, cls in zip(boxes, clss):
            annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])

            obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
            blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio))

            im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = blur_obj

    cv2.imshow("ultralytics", im0)
    video_writer.write(im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
video_writer.release()
cv2.destroyAllWindows()

الحجج model.predict

جدالنوعافتراضيوصف
sourcestr'ultralytics/assets'يحدد مصدر البيانات للاستدلال. يمكن أن يكون مسار صورة، أو ملف فيديو، أو دليل، أو عنوان URL، أو معرّف جهاز للبث المباشر. يدعم مجموعة واسعة من التنسيقات والمصادر، مما يتيح التطبيق المرن عبر أنواع مختلفة من المدخلات.
conffloat0.25يعين الحد الأدنى للثقة للاكتشافات. سيتم تجاهل الكائنات المكتشفة بثقة أقل من هذا الحد. يمكن أن يساعد ضبط هذه القيمة في تقليل الإيجابيات الخاطئة.
ioufloat0.7عتبة التقاطع فوق الاتحاد (IoU) للقمع غير الأقصى (NMS). تؤدي القيم المنخفضة إلى عدد أقل من الاكتشافات عن طريق التخلص من المربعات المتداخلة، وهو أمر مفيد لتقليل التكرارات.
imgszint or tuple640يحدد حجم الصورة للاستدلال. يمكن أن يكون عددا صحيحا واحدا 640 لتغيير حجم المربع أو (الارتفاع، العرض) المربّع أو (الارتفاع، العرض). يمكن أن يحسن التحجيم المناسب من الكشف الدقة وسرعة المعالجة.
halfboolFalseتمكين الاستدلال بنصف الدقة (FP16)، والذي يمكن أن يسرّع استدلال النموذج على وحدات معالجة الرسومات المدعومة بأقل تأثير على الدقة.
devicestrNoneيحدد جهاز الاستدلال (على سبيل المثال ، cpu, cuda:0 أو 0). يسمح للمستخدمين بالاختيار بين CPU ، أو جهاز GPU معين، أو أجهزة حوسبة أخرى لتنفيذ النموذج.
max_detint300الحد الأقصى لعدد الاكتشافات المسموح بها لكل صورة. يحد من العدد الإجمالي للكائنات التي يمكن للنموذج اكتشافها في استدلال واحد، مما يمنع المخرجات الزائدة في المشاهد الكثيفة.
vid_strideint1خطوة الإطار لمدخلات الفيديو. يسمح بتخطي الإطارات في مقاطع الفيديو لتسريع المعالجة على حساب الدقة الزمنية. قيمة 1 تعالج كل إطار ، القيم الأعلى تتخطى الإطارات.
stream_bufferboolFalseيحدد ما إذا كان سيتم وضع الإطارات الواردة في قائمة الانتظار لبث الفيديو. في حالة False، يتم إسقاط الإطارات القديمة لاستيعاب الإطارات الجديدة (محسّن لتطبيقات الوقت الحقيقي). إذا كان 'صحيح'، يتم وضع الإطارات الجديدة في قائمة انتظار في مخزن مؤقت، مما يضمن عدم تخطي أي إطارات، ولكن سيتسبب في حدوث تأخير في التأخير إذا كان معدل الإطارات في الثانية في الاستدلال أقل من معدل الإطارات في الثانية في الدفق.
visualizeboolFalseينشط تصور ميزات النموذج أثناء الاستدلال ، مما يوفر رؤى حول ما "يراه" النموذج. مفيد لتصحيح الأخطاء وتفسير النموذج.
augmentboolFalseيتيح زيادة وقت الاختبار (TTA) للتنبؤات ، مما قد يؤدي إلى تحسين متانة الكشف على حساب سرعة الاستدلال.
agnostic_nmsboolFalseتمكين منع عدم الحد الأقصى (NMS) اللاأدري للفئة ، والذي يدمج المربعات المتداخلة لفئات مختلفة. مفيد في سيناريوهات الكشف متعددة الفئات حيث يكون تداخل الفئة شائعا.
classeslist[int]Noneتصفية التوقعات إلى مجموعة من معرفات الفئة. سيتم إرجاع الاكتشافات التي تنتمي إلى الفئات المحددة فقط. مفيد للتركيز على الكائنات ذات الصلة في مهام الكشف متعددة الفئات.
retina_masksboolFalseإرجاع أقنعة تجزئة عالية الدقة. الأقنعة التي تم إرجاعها (masks.data) ستطابق حجم الصورة الأصلية إذا تم تمكينها. أما إذا تم تعطيلها، فسيكون لها حجم الصورة المستخدم أثناء الاستدلال.
embedlist[int]Noneيحدد الطبقات التي يتم استخراج متجهات الميزات أو التضمينات منها. مفيد للمهام النهائية مثل التجميع أو البحث عن التشابه.
projectstrNoneاسم دليل المشروع حيث يتم حفظ مخرجات التنبؤ في حالة save ممكّنة.
namestrNoneاسم عملية تشغيل التنبؤ. يُستخدم لإنشاء دليل فرعي داخل مجلد المشروع، حيث يتم تخزين مخرجات التنبؤ في حالة save ممكّنة.

الأسئلة المتداولة

ما هو تمويه الأجسام مع Ultralytics YOLO11؟

Object blurring with Ultralytics YOLO11 involves automatically detecting and applying a blurring effect to specific objects in images or videos. This technique enhances privacy by concealing sensitive information while retaining relevant visual data. YOLO11's real-time processing capabilities make it suitable for applications requiring immediate privacy protection and selective focus adjustments.

كيف يمكنني تنفيذ تمويه الأجسام في الوقت الحقيقي باستخدام YOLO11؟

To implement real-time object blurring with YOLO11, follow the provided Python example. This involves using YOLO11 for object detection and OpenCV for applying the blur effect. Here's a simplified version:

import cv2

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break

    results = model.predict(im0, show=False)
    for box in results[0].boxes.xyxy.cpu().tolist():
        obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
        im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = cv2.blur(obj, (50, 50))

    cv2.imshow("YOLO11 Blurring", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

ما هي مزايا استخدام Ultralytics YOLO11 لطمس الأجسام؟

Ultralytics يوفر YOLO11 العديد من المزايا لطمس الأجسام:

  • حماية الخصوصية: إخفاء المعلومات الحساسة أو القابلة للتحديد بشكل فعال.
  • تركيز انتقائي: استهداف كائنات محددة للتشويش، مع الحفاظ على المحتوى المرئي الأساسي.
  • معالجة في الوقت الحقيقي: تنفيذ تشويش الكائنات بكفاءة في البيئات الديناميكية، ومناسبة لتحسينات الخصوصية الفورية.

لمزيد من التطبيقات الأكثر تفصيلاً، راجع قسم مزايا تمويه الأجسام.

هل يمكنني استخدام Ultralytics YOLO11 لتمويه الوجوه في الفيديو لأسباب تتعلق بالخصوصية؟

Yes, Ultralytics YOLO11 can be configured to detect and blur faces in videos to protect privacy. By training or using a pre-trained model to specifically recognize faces, the detection results can be processed with OpenCV to apply a blur effect. Refer to our guide on object detection with YOLO11 and modify the code to target face detection.

كيف يقارن YOLO11 بنماذج اكتشاف الأجسام الأخرى مثل Faster R-CNN لتعتيم الأجسام؟

Ultralytics YOLO11 typically outperforms models like Faster R-CNN in terms of speed, making it more suitable for real-time applications. While both models offer accurate detection, YOLO11's architecture is optimized for rapid inference, which is critical for tasks like real-time object blurring. Learn more about the technical differences and performance metrics in our YOLO11 documentation.

📅 تم إنشاؤه منذ 10 أشهر ✏️ تم التحديث منذ 1 شهر

التعليقات