Saltar al contenido

Enhancing YOLO11 Experiment Tracking and Visualization with Weights & Biases

Object detection models like Ultralytics YOLO11 have become integral to many computer vision applications. However, training, evaluating, and deploying these complex models introduce several challenges. Tracking key training metrics, comparing model variants, analyzing model behavior, and detecting issues require significant instrumentation and experiment management.



Observa: How to use Ultralytics YOLO11 with Weights and Biases

This guide showcases Ultralytics YOLO11 integration with Weights & Biases for enhanced experiment tracking, model-checkpointing, and visualization of model performance. It also includes instructions for setting up the integration, training, fine-tuning, and visualizing results using Weights & Biases' interactive features.

Weights & Biases

Weights & Biases Visi贸n general

Weights & Biases is a cutting-edge MLOps platform designed for tracking, visualizing, and managing machine learning experiments. It features automatic logging of training metrics for full experiment reproducibility, an interactive UI for streamlined data analysis, and efficient model management tools for deploying across various environments.

YOLO11 Training with Weights & Biases

You can use Weights & Biases to bring efficiency and automation to your YOLO11 training process.

Instalaci贸n

Para instalar los paquetes necesarios, ejecuta

Instalaci贸n

# Install the required packages for Ultralytics YOLO and Weights & Biases
pip install -U ultralytics wandb

For detailed instructions and best practices related to the installation process, be sure to check our YOLO11 Installation guide. While installing the required packages for YOLO11, if you encounter any difficulties, consult our Common Issues guide for solutions and tips.

Configuraci贸n de Weights & Biases

Tras instalar los paquetes necesarios, el siguiente paso es configurar tu entorno Weights & Biases . Esto incluye crear una cuenta en Weights & Biases y obtener la clave API necesaria para una conexi贸n fluida entre tu entorno de desarrollo y la plataforma W&B.

Empieza por inicializar el entorno Weights & Biases en tu espacio de trabajo. Puedes hacerlo ejecutando el siguiente comando y siguiendo las instrucciones que se te indiquen.

Configuraci贸n inicial del SDK

import wandb

# Initialize your Weights & Biases environment
wandb.login(key="<API_KEY>")
# Initialize your Weights & Biases environment
wandb login <API_KEY>

Navega a la p谩gina de autorizaci贸n Weights & Biases para crear y recuperar tu clave API. Utiliza esta clave para autenticar tu entorno con W&B.

Usage: Training YOLO11 with Weights & Biases

Before diving into the usage instructions for YOLO11 model training with Weights & Biases, be sure to check out the range of YOLO11 models offered by Ultralytics. This will help you choose the most appropriate model for your project requirements.

Usage: Training YOLO11 with Weights & Biases

from ultralytics import YOLO

# Load a YOLO model
model = YOLO("yolo11n.pt")

# Train and Fine-Tune the Model
model.train(data="coco8.yaml", epochs=5, project="ultralytics", name="yolo11n")
# Train a YOLO11 model with Weights & Biases
yolo train data=coco8.yaml epochs=5 project=ultralytics name=yolo11n

W&B Arguments

Argumento Por defecto Descripci贸n
proyecto None Specifies the name of the project logged locally and in W&B. This way you can group multiple runs together.
name None The name of the training run. This determines the name used to create subfolders and the name used for W&B logging

Enable or Disable Weights & Biases

If you want to enable or disable Weights & Biases logging, you can use the wandb command. By default, Weights & Biases logging is enabled.

# Enable Weights & Biases logging
wandb enabled

# Disable Weights & Biases logging
wandb disabled

Comprender la salida

Al ejecutar el fragmento de c贸digo de uso anterior, puedes esperar los siguientes resultados clave:

  • La configuraci贸n de una nueva tirada con su ID 煤nico, que indica el inicio del proceso de entrenamiento.
  • Un resumen conciso de la estructura del modelo, incluido el n煤mero de capas y par谩metros.
  • Regular updates on important metrics such as box loss, cls loss, dfl loss, precision, recall, and mAP scores during each training epoch.
  • At the end of training, detailed metrics including the model's inference speed, and overall accuracy metrics are displayed.
  • Enlaces al panel de control Weights & Biases para un an谩lisis en profundidad y la visualizaci贸n del proceso de entrenamiento, junto con informaci贸n sobre la ubicaci贸n de los archivos de registro locales.

Ver el panel Weights & Biases

After running the usage code snippet, you can access the Weights & Biases (W&B) dashboard through the provided link in the output. This dashboard offers a comprehensive view of your model's training process with YOLO11.

Caracter铆sticas principales del panel Weights & Biases

  • Seguimiento de m茅tricas en tiempo real: Observa m茅tricas como la p茅rdida, la precisi贸n y las puntuaciones de validaci贸n a medida que evolucionan durante el entrenamiento, ofreciendo informaci贸n inmediata para el ajuste del modelo. Mira c贸mo se realiza el seguimiento de los experimentos utilizando Weights & Biases.

  • Hyperparameter Optimization: Weights & Biases aids in fine-tuning critical parameters such as learning rate, batch size, and more, enhancing the performance of YOLO11.

  • An谩lisis comparativo: La plataforma permite la comparaci贸n lado a lado de diferentes ejecuciones de entrenamiento, esencial para evaluar el impacto de diversas configuraciones del modelo.

  • Visualizaci贸n del progreso del entrenamiento: Las representaciones gr谩ficas de las m茅tricas clave proporcionan una comprensi贸n intuitiva del rendimiento del modelo a lo largo de las 茅pocas. Mira c贸mo Weights & Biases te ayuda a visualizar los resultados de la validaci贸n.

  • Monitorizaci贸n de recursos: Realiza un seguimiento de CPU, GPU, y del uso de memoria para optimizar la eficiencia del proceso de entrenamiento.

  • Gesti贸n de artefactos del modelo: Accede a los puntos de control del modelo y comp谩rtelos, facilitando el despliegue y la colaboraci贸n.

  • Visualizaci贸n de los resultados de la inferencia con superposici贸n de im谩genes: Visualiza los resultados de la predicci贸n en im谩genes mediante superposiciones interactivas en Weights & Biases, proporcionando una visi贸n clara y detallada del rendimiento del modelo en datos del mundo real. Para obtener informaci贸n m谩s detallada sobre las capacidades de superposici贸n de im谩genes de Weights & Biases', consulta este enlace. Comprueba c贸mo las superposiciones de im谩genes de Weights & Biases' ayudan a visualizar las inferencias del modelo.

By using these features, you can effectively track, analyze, and optimize your YOLO11 model's training, ensuring the best possible performance and efficiency.

Resumen

This guide helped you explore the Ultralytics YOLO integration with Weights & Biases. It illustrates the ability of this integration to efficiently track and visualize model training and prediction results.

Para m谩s detalles sobre su uso, visita Weights & Biases' documentaci贸n oficial.

Adem谩s, aseg煤rate de consultar la p谩gina de la gu铆a de integraci贸nUltralytics , para saber m谩s sobre diferentes integraciones interesantes.

PREGUNTAS FRECUENTES

How do I integrate Weights & Biases with Ultralytics YOLO11?

To integrate Weights & Biases with Ultralytics YOLO11:

  1. Instala los paquetes necesarios:
pip install -U ultralytics wandb
  1. Log in to your Weights & Biases account:
import wandb

wandb.login(key="<API_KEY>")
  1. Train your YOLO11 model with W&B logging enabled:
from ultralytics import YOLO

model = YOLO("yolo11n.pt")
model.train(data="coco8.yaml", epochs=5, project="ultralytics", name="yolo11n")

This will automatically log metrics, hyperparameters, and model artifacts to your W&B project.

What are the key features of Weights & Biases integration with YOLO11?

The key features include:

  • Real-time metrics tracking during training
  • Hyperparameter optimization tools
  • Comparative analysis of different training runs
  • Visualization of training progress through graphs
  • Resource monitoring (CPU, GPU, memory usage)
  • Model artifacts management and sharing
  • Viewing inference results with image overlays

These features help in tracking experiments, optimizing models, and collaborating more effectively on YOLO11 projects.

How can I view the Weights & Biases dashboard for my YOLO11 training?

After running your training script with W&B integration:

  1. A link to your W&B dashboard will be provided in the console output.
  2. Click on the link or go to wandb.ai and log in to your account.
  3. Navigate to your project to view detailed metrics, visualizations, and model performance data.

The dashboard offers insights into your model's training process, allowing you to analyze and improve your YOLO11 models effectively.

Can I disable Weights & Biases logging for YOLO11 training?

Yes, you can disable W&B logging using the following command:

wandb disabled

To re-enable logging, use:

wandb enabled

This allows you to control when you want to use W&B logging without modifying your training scripts.

How does Weights & Biases help in optimizing YOLO11 models?

Weights & Biases helps optimize YOLO11 models by:

  1. Providing detailed visualizations of training metrics
  2. Enabling easy comparison between different model versions
  3. Offering tools for hyperparameter tuning
  4. Allowing for collaborative analysis of model performance
  5. Facilitating easy sharing of model artifacts and results

These features help researchers and developers iterate faster and make data-driven decisions to improve their YOLO11 models.


馃搮C reado hace 9 meses 鉁忥笍 Actualizado hace 1 d铆a

Comentarios