PyTorch Cubo
馃摎 En esta gu铆a se explica c贸mo cargar YOLOv5 馃殌 de PyTorch Hub en https://pytorch.org/hub/ultralytics_yolov5.
Antes de empezar
Instalar requirements.txt en un Python>=3.8.0 incluyendo PyTorch>=1.8. Los modelos y conjuntos de datos se descargan autom谩ticamente de la 煤ltimaversi贸n de YOLOv5 .
馃挕 ProTip: Clonaci贸n https://github.com/ultralytics / yolov5 no es necesario 馃槂
Carga YOLOv5 con PyTorch Hub
Ejemplo sencillo
Este ejemplo carga un modelo YOLOv5s preentrenado de PyTorch Hub como model
y pasa una imagen para su inferencia. 'yolov5s'
es el modelo m谩s ligero y r谩pido de YOLOv5 . Para m谩s informaci贸n sobre todos los modelos disponibles, consulte la p谩gina L脡AME.
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")
# Image
im = "https://ultralytics.com/images/zidane.jpg"
# Inference
results = model(im)
results.pandas().xyxy[0]
# xmin ymin xmax ymax confidence class name
# 0 749.50 43.50 1148.0 704.5 0.874023 0 person
# 1 433.50 433.50 517.5 714.5 0.687988 27 tie
# 2 114.75 195.75 1095.0 708.0 0.624512 0 person
# 3 986.00 304.00 1028.0 420.0 0.286865 27 tie
Ejemplo detallado
Este ejemplo muestra inferencia por lotes con PIL y OpenCV fuentes de im谩genes. results
puede ser impreso a la consola, guardado a runs/hub
, mostr贸 a la pantalla en entornos compatibles, y devuelto como tensores o pandas marcos de datos.
import cv2
import torch
from PIL import Image
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")
# Images
for f in "zidane.jpg", "bus.jpg":
torch.hub.download_url_to_file("https://ultralytics.com/images/" + f, f) # download 2 images
im1 = Image.open("zidane.jpg") # PIL image
im2 = cv2.imread("bus.jpg")[..., ::-1] # OpenCV image (BGR to RGB)
# Inference
results = model([im1, im2], size=640) # batch of images
# Results
results.print()
results.save() # or .show()
results.xyxy[0] # im1 predictions (tensor)
results.pandas().xyxy[0] # im1 predictions (pandas)
# xmin ymin xmax ymax confidence class name
# 0 749.50 43.50 1148.0 704.5 0.874023 0 person
# 1 433.50 433.50 517.5 714.5 0.687988 27 tie
# 2 114.75 195.75 1095.0 708.0 0.624512 0 person
# 3 986.00 304.00 1028.0 420.0 0.286865 27 tie
Para todas las opciones de inferencia, v茅ase YOLOv5 AutoShape()
adelante m茅todo.
Ajustes de inferencia
YOLOv5 contienen varios atributos de inferencia, como el umbral de confianza, el umbral de IoU, etc., que pueden establecerse mediante:
model.conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
agnostic = False # NMS class-agnostic
multi_label = False # NMS multiple labels per box
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
max_det = 1000 # maximum number of detections per image
amp = False # Automatic Mixed Precision (AMP) inference
results = model(im, size=320) # custom inference size
Dispositivo
Los modelos pueden transferirse a cualquier dispositivo tras su creaci贸n:
Los modelos tambi茅n pueden crearse directamente en cualquier device
:
馃挕 ProTip: Las im谩genes de entrada se transfieren autom谩ticamente al dispositivo modelo correcto antes de la inferencia.
Silenciar salidas
Los modelos pueden cargarse silenciosamente con _verbose=False
:
Canales de entrada
Para cargar un modelo YOLOv5s preentrenado con 4 canales de entrada en lugar de los 3 predeterminados:
En este caso, el modelo estar谩 compuesto por pesos preentrenados , excepto la primera capa de entrada, que ya no tendr谩 la misma forma que la capa de entrada preentrenada. La capa de entrada seguir谩 inicializada con pesos aleatorios.
N煤mero de clases
Para cargar un modelo YOLOv5s preentrenado con 10 clases de salida en lugar de las 80 predeterminadas:
En este caso, el modelo estar谩 compuesto por pesos preentrenados excepto las capas de salida, que ya no tendr谩n la misma forma que las capas de salida preentrenadas. Las capas de salida seguir谩n inicializadas con pesos aleatorios.
Recarga forzada
Si tiene problemas con los pasos anteriores, configure force_reload=True
puede ayudar descartando la cach茅 existente y forzando una nueva descarga de la 煤ltima versi贸n de YOLOv5 desde PyTorch Hub.
Inferencia de capturas de pantalla
Para ejecutar la inferencia en la pantalla de tu escritorio:
import torch
from PIL import ImageGrab
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")
# Image
im = ImageGrab.grab() # take a screenshot
# Inference
results = model(im)
Multi-GPU Inferencia
YOLOv5 pueden cargarse en varias GPU en paralelo con inferencia en hilos:
import threading
import torch
def run(model, im):
"""Performs inference on an image using a given model and saves the output; model must support `.save()` method."""
results = model(im)
results.save()
# Models
model0 = torch.hub.load("ultralytics/yolov5", "yolov5s", device=0)
model1 = torch.hub.load("ultralytics/yolov5", "yolov5s", device=1)
# Inference
threading.Thread(target=run, args=[model0, "https://ultralytics.com/images/zidane.jpg"], daemon=True).start()
threading.Thread(target=run, args=[model1, "https://ultralytics.com/images/bus.jpg"], daemon=True).start()
Formaci贸n
Para cargar un modelo YOLOv5 para entrenamiento en lugar de inferencia, establezca autoshape=False
. Para cargar un modelo con pesos inicializados aleatoriamente (para entrenar desde cero) utilice pretrained=False
. En este caso, deber谩 proporcionar su propio gui贸n de formaci贸n. Tambi茅n puede consultar nuestro YOLOv5 Tutorial Tren de datos personalizados para el entrenamiento del modelo.
import torch
model = torch.hub.load("ultralytics/yolov5", "yolov5s", autoshape=False) # load pretrained
model = torch.hub.load("ultralytics/yolov5", "yolov5s", autoshape=False, pretrained=False) # load scratch
Resultados Base64
Para uso con servicios API. Consulte https://github.com/ultralytics / yolov5/pull/2291 y el ejemplo de API REST de Flask para obtener m谩s detalles.
results = model(im) # inference
results.ims # array of original images (as np array) passed to model for inference
results.render() # updates results.ims with boxes and labels
for im in results.ims:
buffered = BytesIO()
im_base64 = Image.fromarray(im)
im_base64.save(buffered, format="JPEG")
print(base64.b64encode(buffered.getvalue()).decode("utf-8")) # base64 encoded image with results
Resultados recortados
Los resultados pueden devolverse y guardarse como cultivos de detecci贸n:
Resultados de Pandas
Los resultados pueden ser devueltos como Pandas DataFrames:
Salida de pandas (haga clic para ampliar)
Resultados clasificados
Los resultados se pueden ordenar por columnas, es decir, ordenar la detecci贸n de d铆gitos de matr铆cula de izquierda a derecha (eje x):
Resultados recortados
Los resultados pueden devolverse y guardarse como cultivos de detecci贸n:
Resultados JSON
Los resultados pueden devolverse en formato JSON una vez convertidos a .pandas()
utilizando la funci贸n .to_json()
m茅todo. El formato JSON puede modificarse utilizando el m茅todo orient
argumento. Ver pandas .to_json()
documentaci贸n para m谩s detalles.
results = model(ims) # inference
results.pandas().xyxy[0].to_json(orient="records") # JSON img1 predictions
Salida JSON (haga clic para ampliar)
[
{
"xmin": 749.5,
"ymin": 43.5,
"xmax": 1148.0,
"ymax": 704.5,
"confidence": 0.8740234375,
"class": 0,
"name": "person"
},
{
"xmin": 433.5,
"ymin": 433.5,
"xmax": 517.5,
"ymax": 714.5,
"confidence": 0.6879882812,
"class": 27,
"name": "tie"
},
{
"xmin": 115.25,
"ymin": 195.75,
"xmax": 1096.0,
"ymax": 708.0,
"confidence": 0.6254882812,
"class": 0,
"name": "person"
},
{
"xmin": 986.0,
"ymin": 304.0,
"xmax": 1028.0,
"ymax": 420.0,
"confidence": 0.2873535156,
"class": 27,
"name": "tie"
}
]
Modelos personalizados
Este ejemplo carga una clase 20 personalizada COV-modelo YOLOv5s entrenado 'best.pt'
con PyTorch Hub.
import torch
model = torch.hub.load("ultralytics/yolov5", "custom", path="path/to/best.pt") # local model
model = torch.hub.load("path/to/yolov5", "custom", path="path/to/best.pt", source="local") # local repo
TensorRT, ONNX y OpenVINO Modelos
PyTorch Hub soporta la inferencia en la mayor铆a de los formatos de exportaci贸n de YOLOv5 , incluyendo modelos entrenados a medida. Consulte el tutorial de exportaci贸n de TFLite, ONNX, CoreML, TensorRT para obtener m谩s informaci贸n sobre la exportaci贸n de modelos.
馃挕 ProTip: TensorRT puede ser hasta 2-5X m谩s r谩pido que PyTorch en GPU puntos de referencia 馃挕 ProTip: ONNX y OpenVINO puede ser hasta 2-3X m谩s r谩pido que PyTorch en CPU puntos de referencia
import torch
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.pt") # PyTorch
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.torchscript") # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.onnx") # ONNX
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s_openvino_model/") # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.engine") # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.mlmodel") # CoreML (macOS-only)
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s.tflite") # TFLite
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5s_paddle_model/") # PaddlePaddle
Entornos compatibles
Ultralytics proporciona una serie de entornos listos para usar, cada uno de ellos preinstalado con dependencias esenciales como CUDACUDNN, Pythony PyTorchpara poner en marcha sus proyectos.
- Cuadernos gratuitos GPU:
- Google Nube: Gu铆a de inicio r谩pido de GCP
- Amazon: Gu铆a de inicio r谩pido de AWS
- Azure: Gu铆a de inicio r谩pido de AzureML
- Docker: Gu铆a de inicio r谩pido de Docker
Estado del proyecto
Este distintivo indica que todas las pruebas de integraci贸n continua (IC) deYOLOv5 GitHub Actions se han superado con 茅xito. Estas pruebas de IC comprueban rigurosamente la funcionalidad y el rendimiento de YOLOv5 en varios aspectos clave: formaci贸n, validaci贸n, inferencia, exportaci贸n y puntos de referencia. Garantizan un funcionamiento coherente y fiable en macOS, Windows y Ubuntu, con pruebas realizadas cada 24 horas y en cada nueva confirmaci贸n.