Inference API Ultralytics HUB
Après avoir entraîné un modèle, vous pouvez utiliser l’Inference API partagée gratuitement. Si vous êtes un utilisateur Pro, vous pouvez accéder à l’Inference API dédiée. L’Ultralytics HUB Inference API vous permet d’exécuter l’inférence via notre REST API sans avoir besoin d’installer et de configurer l’environnement Ultralytics YOLO localement.

Regarder : Présentation de l'Inference API Ultralytics HUB
Inference API dédiée
En réponse à la forte demande et à l'intérêt généralisé, nous sommes ravis de dévoiler l'Ultralytics HUB Inference API dédiée, offrant un déploiement en un seul clic dans un environnement dédié pour nos utilisateurs Pro !
Remarque
Nous sommes ravis d'offrir cette fonctionnalité GRATUITEMENT pendant notre bêta publique dans le cadre du Pro Plan, avec des niveaux payants possibles à l'avenir.
- Couverture mondiale : Déployé dans 38 régions du monde, assurant un accès à faible latence depuis n'importe quel endroit. Consultez la liste complète des régions Google Cloud.
- Basé sur Google Cloud Run : Soutenu par Google Cloud Run, fournissant une infrastructure infiniment scalable et très fiable.
- Haute Vitesse : Une latence inférieure à 100 ms est possible pour l'inférence YOLOv8n à une résolution de 640 à partir de régions proches, selon les tests d'Ultralytics.
- Sécurité Renforcée : Fournit des fonctionnalités de sécurité robustes pour protéger vos données et garantir la conformité aux normes de l'industrie. En savoir plus sur la sécurité de Google Cloud.
Pour utiliser l'Inference API dédiée Ultralytics HUB, cliquez sur le bouton Start Endpoint. Ensuite, utilisez l'URL unique du point de terminaison comme décrit dans les guides ci-dessous.

Astuce
Choisissez la région avec la latence la plus faible pour obtenir les meilleures performances, comme décrit dans la documentation.
Pour arrêter le point de terminaison dédié, cliquez sur le bouton Arrêter le point de terminaison.

Inference API partagée
Pour utiliser l'Inference API partagée Ultralytics HUB, suivez les guides ci-dessous.
L'Inference API partagée Ultralytics HUB a les limites d'utilisation suivantes :
- 100 appels / heure
Python
Pour accéder à l'Inference API Ultralytics HUB en utilisant python, utilisez le code suivant :
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
Remarque
Remplacez MODEL_ID avec l'ID de modèle souhaité, API_KEY avec votre clé API réelle, et path/to/image.jpg avec le chemin d'accès à l'image sur laquelle vous souhaitez exécuter l'inférence.
Si vous utilisez notre Inference API dédiée, remplacez le url également.
cURL
Pour accéder à l'Inference API Ultralytics HUB en utilisant cURL, utilisez le code suivant :
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
Remarque
Remplacez MODEL_ID avec l'ID de modèle souhaité, API_KEY avec votre clé API réelle, et path/to/image.jpg avec le chemin d'accès à l'image sur laquelle vous souhaitez exécuter l'inférence.
Si vous utilisez notre Inference API dédiée, remplacez le url également.
Arguments
Consultez le tableau ci-dessous pour une liste complète des arguments d'inférence disponibles.
| Argument | Par défaut | Type | Description |
|---|---|---|---|
file | file | Fichier image ou vidéo à utiliser pour l'inférence. | |
imgsz | 640 | int | Taille de l'image d'entrée, la plage valide est 32 - 1280 pixels. |
conf | 0.25 | float | Seuil de confiance pour les prédictions, plage valide 0.01 - 1.0. |
iou | 0.45 | float | Intersection sur Union seuil (IoU), plage valide 0.0 - 0.95. |
Réponse
L'Inference API Ultralytics HUB renvoie une réponse JSON.
Classification
Modèle de classification
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-cls.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].to_json())
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
Détection
Modèle de détection
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].to_json())
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
OBB
Modèle OBB
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-obb.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 374.85565,
"x2": 392.31824,
"x3": 412.81805,
"x4": 395.35547,
"y1": 264.40704,
"y2": 267.45728,
"y3": 150.0966,
"y4": 147.04634
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
Segmentation
Modèle de segmentation
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-seg.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
},
"segments": {
"x": [
266.015625,
266.015625,
258.984375,
...
],
"y": [
110.15625,
113.67188262939453,
120.70311737060547,
...
]
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
Pose
Modèle de pose
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-pose.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://predict.ultralytics.com" \
-H "x-api-key: API_KEY" \
-F "model=https://hub.ultralytics.com/models/MODEL_ID" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
import requests
# API URL
url = "https://predict.ultralytics.com"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (use actual MODEL_ID)
data = {"model": "https://hub.ultralytics.com/models/MODEL_ID", "imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
},
"keypoints": {
"visible": [
0.9909399747848511,
0.8162999749183655,
0.9872099757194519,
...
],
"x": [
316.3871765136719,
315.9374694824219,
304.878173828125,
...
],
"y": [
156.4207763671875,
148.05775451660156,
144.93240356445312,
...
]
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}