Skip to content

Référence pour ultralytics/utils/plotting.py

Note

Ce fichier est disponible à l'adresse https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/utils/plotting .py. Si tu repères un problème, aide à le corriger en contribuant à une Pull Request 🛠️. Merci 🙏 !



ultralytics.utils.plotting.Colors

Ultralytics palette de couleurs par défaut https://ultralytics.com/.

Cette classe fournit des méthodes pour travailler avec la palette de couleurs Ultralytics , y compris la conversion des codes de couleur hexagonaux en valeurs RVB. valeurs RVB.

Attributs :

Nom Type Description
palette list of tuple

Liste des valeurs de couleur RVB.

n int

Le nombre de couleurs dans la palette.

pose_palette ndarray

Un tableau de palettes de couleurs spécifiques de type np.uint8.

Code source dans ultralytics/utils/plotting.py
class Colors:
    """
    Ultralytics default color palette https://ultralytics.com/.

    This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
    RGB values.

    Attributes:
        palette (list of tuple): List of RGB color values.
        n (int): The number of colors in the palette.
        pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
    """

    def __init__(self):
        """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
        hexs = (
            "FF3838",
            "FF9D97",
            "FF701F",
            "FFB21D",
            "CFD231",
            "48F90A",
            "92CC17",
            "3DDB86",
            "1A9334",
            "00D4BB",
            "2C99A8",
            "00C2FF",
            "344593",
            "6473FF",
            "0018EC",
            "8438FF",
            "520085",
            "CB38FF",
            "FF95C8",
            "FF37C7",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)
        self.pose_palette = np.array(
            [
                [255, 128, 0],
                [255, 153, 51],
                [255, 178, 102],
                [230, 230, 0],
                [255, 153, 255],
                [153, 204, 255],
                [255, 102, 255],
                [255, 51, 255],
                [102, 178, 255],
                [51, 153, 255],
                [255, 153, 153],
                [255, 102, 102],
                [255, 51, 51],
                [153, 255, 153],
                [102, 255, 102],
                [51, 255, 51],
                [0, 255, 0],
                [0, 0, 255],
                [255, 0, 0],
                [255, 255, 255],
            ],
            dtype=np.uint8,
        )

    def __call__(self, i, bgr=False):
        """Converts hex color codes to RGB values."""
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):
        """Converts hex color codes to RGB values (i.e. default PIL order)."""
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))

__call__(i, bgr=False)

Convertit les codes de couleur hexagonaux en valeurs RVB.

Code source dans ultralytics/utils/plotting.py
def __call__(self, i, bgr=False):
    """Converts hex color codes to RGB values."""
    c = self.palette[int(i) % self.n]
    return (c[2], c[1], c[0]) if bgr else c

__init__()

Initialise les couleurs comme hex = matplotlib.colors.TABLEAU_COLORS.values().

Code source dans ultralytics/utils/plotting.py
def __init__(self):
    """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
    hexs = (
        "FF3838",
        "FF9D97",
        "FF701F",
        "FFB21D",
        "CFD231",
        "48F90A",
        "92CC17",
        "3DDB86",
        "1A9334",
        "00D4BB",
        "2C99A8",
        "00C2FF",
        "344593",
        "6473FF",
        "0018EC",
        "8438FF",
        "520085",
        "CB38FF",
        "FF95C8",
        "FF37C7",
    )
    self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
    self.n = len(self.palette)
    self.pose_palette = np.array(
        [
            [255, 128, 0],
            [255, 153, 51],
            [255, 178, 102],
            [230, 230, 0],
            [255, 153, 255],
            [153, 204, 255],
            [255, 102, 255],
            [255, 51, 255],
            [102, 178, 255],
            [51, 153, 255],
            [255, 153, 153],
            [255, 102, 102],
            [255, 51, 51],
            [153, 255, 153],
            [102, 255, 102],
            [51, 255, 51],
            [0, 255, 0],
            [0, 0, 255],
            [255, 0, 0],
            [255, 255, 255],
        ],
        dtype=np.uint8,
    )

hex2rgb(h) staticmethod

Convertit les codes de couleur hexagonaux en valeurs RVB (c'est-à-dire l'ordre PIL par défaut).

Code source dans ultralytics/utils/plotting.py
@staticmethod
def hex2rgb(h):
    """Converts hex color codes to RGB values (i.e. default PIL order)."""
    return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))



ultralytics.utils.plotting.Annotator

Ultralytics Annotateur pour les mosaïques train/val et JPG et les annotations de prédictions.

Attributs :

Nom Type Description
im Image.Image or numpy array

L'image Ă  annoter.

pil bool

Utilise ou non PIL ou cv2 pour dessiner des annotations.

font truetype or load_default

Police utilisée pour les annotations de texte.

lw float

Largeur de ligne pour le dessin.

skeleton List[List[int]]

Structure squelettique pour les points clés.

limb_color List[int]

Palette de couleurs pour les membres.

kpt_color List[int]

Palette de couleurs pour les points clés.

Code source dans ultralytics/utils/plotting.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
class Annotator:
    """
    Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.

    Attributes:
        im (Image.Image or numpy array): The image to annotate.
        pil (bool): Whether to use PIL or cv2 for drawing annotations.
        font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
        lw (float): Line width for drawing.
        skeleton (List[List[int]]): Skeleton structure for keypoints.
        limb_color (List[int]): Color palette for limbs.
        kpt_color (List[int]): Color palette for keypoints.
    """

    def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
        """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        input_is_pil = isinstance(im, Image.Image)
        self.pil = pil or non_ascii or input_is_pil
        self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
        if self.pil:  # use PIL
            self.im = im if input_is_pil else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            try:
                font = check_font("Arial.Unicode.ttf" if non_ascii else font)
                size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
                self.font = ImageFont.truetype(str(font), size)
            except Exception:
                self.font = ImageFont.load_default()
            # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
            if check_version(pil_version, "9.2.0"):
                self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
        else:  # use cv2
            assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
            self.im = im if im.flags.writeable else im.copy()
            self.tf = max(self.lw - 1, 1)  # font thickness
            self.sf = self.lw / 3  # font scale
        # Pose
        self.skeleton = [
            [16, 14],
            [14, 12],
            [17, 15],
            [15, 13],
            [12, 13],
            [6, 12],
            [7, 13],
            [6, 7],
            [6, 8],
            [7, 9],
            [8, 10],
            [9, 11],
            [2, 3],
            [1, 2],
            [1, 3],
            [2, 4],
            [3, 5],
            [4, 6],
            [5, 7],
        ]

        self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
        self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

    def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
        """Add one xyxy box to image with label."""
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            if rotated:
                p1 = box[0]
                # NOTE: PIL-version polygon needs tuple type.
                self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
            else:
                p1 = (box[0], box[1])
                self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                w, h = self.font.getsize(label)  # text width, height
                outside = p1[1] - h >= 0  # label fits outside box
                self.draw.rectangle(
                    (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            if rotated:
                p1 = [int(b) for b in box[0]]
                # NOTE: cv2-version polylines needs np.asarray type.
                cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
            else:
                p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
            if label:
                w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                outside = p1[1] - h >= 3
                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(
                    self.im,
                    label,
                    (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                    0,
                    self.sf,
                    txt_color,
                    thickness=self.tf,
                    lineType=cv2.LINE_AA,
                )

    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """
        Plot masks on image.

        Args:
            masks (tensor): Predicted masks on cuda, shape: [n, h, w]
            colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
            im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
            alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
            retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        if im_gpu.device != masks.device:
            im_gpu = im_gpu.to(masks.device)
        colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

        inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
        im_mask = im_gpu * 255
        im_mask_np = im_mask.byte().cpu().numpy()
        self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
        """
        Plot keypoints on the image.

        Args:
            kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
            shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
            radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                       for human pose. Default is True.

        Note:
            `kpt_line=True` currently only supports human pose plotting.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        nkpt, ndim = kpts.shape
        is_pose = nkpt == 17 and ndim in {2, 3}
        kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
        for i, k in enumerate(kpts):
            color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < 0.5:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

        if kpt_line:
            ndim = kpts.shape[-1]
            for i, sk in enumerate(self.skeleton):
                pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
                pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
                if ndim == 3:
                    conf1 = kpts[(sk[0] - 1), 2]
                    conf2 = kpts[(sk[1] - 1), 2]
                    if conf1 < 0.5 or conf2 < 0.5:
                        continue
                if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                    continue
                if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                    continue
                cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def rectangle(self, xy, fill=None, outline=None, width=1):
        """Add rectangle to image (PIL-only)."""
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
        """Adds text to an image using PIL or cv2."""
        if anchor == "bottom":  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        if self.pil:
            if box_style:
                w, h = self.font.getsize(text)
                self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            if "\n" in text:
                lines = text.split("\n")
                _, h = self.font.getsize(text)
                for line in lines:
                    self.draw.text(xy, line, fill=txt_color, font=self.font)
                    xy[1] += h
            else:
                self.draw.text(xy, text, fill=txt_color, font=self.font)
        else:
            if box_style:
                w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                outside = xy[1] - h >= 3
                p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
                cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

    def fromarray(self, im):
        """Update self.im from a numpy array."""
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        """Return annotated image as array."""
        return np.asarray(self.im)

    def show(self, title=None):
        """Show the annotated image."""
        Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)

    def save(self, filename="image.jpg"):
        """Save the annotated image to 'filename'."""
        cv2.imwrite(filename, np.asarray(self.im))

    def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
        """
        Draw region line.

        Args:
            reg_pts (list): Region Points (for line 2 points, for region 4 points)
            color (tuple): Region Color value
            thickness (int): Region area thickness value
        """
        cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

    def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
        """
        Draw centroid point and track trails.

        Args:
            track (list): object tracking points for trails display
            color (tuple): tracks line color
            track_thickness (int): track line thickness value
        """
        points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
        cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

    def count_labels(self, counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0)):
        """
        Plot counts for object counter.

        Args:
            counts (int): objects counts value
            count_txt_size (int): text size for counts display
            color (tuple): background color of counts display
            txt_color (tuple): text color of counts display
        """
        self.tf = count_txt_size
        tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
        tf = max(tl - 1, 1)

        # Get text size for in_count and out_count
        t_size_in = cv2.getTextSize(str(counts), 0, fontScale=tl / 2, thickness=tf)[0]

        # Calculate positions for counts label
        text_width = t_size_in[0]
        text_x = (self.im.shape[1] - text_width) // 2  # Center x-coordinate
        text_y = t_size_in[1]

        # Create a rounded rectangle for in_count
        cv2.rectangle(
            self.im, (text_x - 5, text_y - 5), (text_x + text_width + 7, text_y + t_size_in[1] + 7), color, -1
        )
        cv2.putText(
            self.im, str(counts), (text_x, text_y + t_size_in[1]), 0, tl / 2, txt_color, self.tf, lineType=cv2.LINE_AA
        )

    @staticmethod
    def estimate_pose_angle(a, b, c):
        """
        Calculate the pose angle for object.

        Args:
            a (float) : The value of pose point a
            b (float): The value of pose point b
            c (float): The value o pose point c

        Returns:
            angle (degree): Degree value of angle between three points
        """
        a, b, c = np.array(a), np.array(b), np.array(c)
        radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
        angle = np.abs(radians * 180.0 / np.pi)
        if angle > 180.0:
            angle = 360 - angle
        return angle

    def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2):
        """
        Draw specific keypoints for gym steps counting.

        Args:
            keypoints (list): list of keypoints data to be plotted
            indices (list): keypoints ids list to be plotted
            shape (tuple): imgsz for model inference
            radius (int): Keypoint radius value
        """
        for i, k in enumerate(keypoints):
            if i in indices:
                x_coord, y_coord = k[0], k[1]
                if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                    if len(k) == 3:
                        conf = k[2]
                        if conf < 0.5:
                            continue
                    cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
        return self.im

    def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2):
        """
        Plot the pose angle, count value and step stage.

        Args:
            angle_text (str): angle value for workout monitoring
            count_text (str): counts value for workout monitoring
            stage_text (str): stage decision for workout monitoring
            center_kpt (int): centroid pose index for workout monitoring
            line_thickness (int): thickness for text display
        """
        angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
        font_scale = 0.6 + (line_thickness / 10.0)

        # Draw angle
        (angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, font_scale, line_thickness)
        angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
        angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
        angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2))
        cv2.rectangle(
            self.im,
            angle_background_position,
            (
                angle_background_position[0] + angle_background_size[0],
                angle_background_position[1] + angle_background_size[1],
            ),
            (255, 255, 255),
            -1,
        )
        cv2.putText(self.im, angle_text, angle_text_position, 0, font_scale, (0, 0, 0), line_thickness)

        # Draw Counts
        (count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, font_scale, line_thickness)
        count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
        count_background_position = (
            angle_background_position[0],
            angle_background_position[1] + angle_background_size[1] + 5,
        )
        count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2))

        cv2.rectangle(
            self.im,
            count_background_position,
            (
                count_background_position[0] + count_background_size[0],
                count_background_position[1] + count_background_size[1],
            ),
            (255, 255, 255),
            -1,
        )
        cv2.putText(self.im, count_text, count_text_position, 0, font_scale, (0, 0, 0), line_thickness)

        # Draw Stage
        (stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, font_scale, line_thickness)
        stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
        stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
        stage_background_size = (stage_text_width + 10, stage_text_height + 10)

        cv2.rectangle(
            self.im,
            stage_background_position,
            (
                stage_background_position[0] + stage_background_size[0],
                stage_background_position[1] + stage_background_size[1],
            ),
            (255, 255, 255),
            -1,
        )
        cv2.putText(self.im, stage_text, stage_text_position, 0, font_scale, (0, 0, 0), line_thickness)

    def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
        """
        Function for drawing segmented object in bounding box shape.

        Args:
            mask (list): masks data list for instance segmentation area plotting
            mask_color (tuple): mask foreground color
            det_label (str): Detection label text
            track_label (str): Tracking label text
        """
        cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)

        label = f"Track ID: {track_label}" if track_label else det_label
        text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)

        cv2.rectangle(
            self.im,
            (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
            (int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
            mask_color,
            -1,
        )

        cv2.putText(
            self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
        )

    def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
        """
        Plot the distance and line on frame.

        Args:
            distance_m (float): Distance between two bbox centroids in meters.
            distance_mm (float): Distance between two bbox centroids in millimeters.
            centroids (list): Bounding box centroids data.
            line_color (RGB): Distance line color.
            centroid_color (RGB): Bounding box centroid color.
        """
        (text_width_m, text_height_m), _ = cv2.getTextSize(
            f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
        )
        cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1)
        cv2.putText(
            self.im,
            f"Distance M: {distance_m:.2f}m",
            (20, 50),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.8,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
        )

        (text_width_mm, text_height_mm), _ = cv2.getTextSize(
            f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
        )
        cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1)
        cv2.putText(
            self.im,
            f"Distance MM: {distance_mm:.2f}mm",
            (20, 100),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.8,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
        )

        cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
        cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
        cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

    def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10):
        """
        Function for pinpoint human-vision eye mapping and plotting.

        Args:
            box (list): Bounding box coordinates
            center_point (tuple): center point for vision eye view
            color (tuple): object centroid and line color value
            pin_color (tuple): visioneye point color value
            thickness (int): int value for line thickness
            pins_radius (int): visioneye point radius value
        """
        center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        cv2.circle(self.im, center_point, pins_radius, pin_color, -1)
        cv2.circle(self.im, center_bbox, pins_radius, color, -1)
        cv2.line(self.im, center_point, center_bbox, color, thickness)

__init__(im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc')

Initialise la classe Annotator avec l'image et la largeur de ligne ainsi que la palette de couleurs pour les points clés et les membres.

Code source dans ultralytics/utils/plotting.py
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
    """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
    non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
    input_is_pil = isinstance(im, Image.Image)
    self.pil = pil or non_ascii or input_is_pil
    self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
    if self.pil:  # use PIL
        self.im = im if input_is_pil else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)
        try:
            font = check_font("Arial.Unicode.ttf" if non_ascii else font)
            size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
            self.font = ImageFont.truetype(str(font), size)
        except Exception:
            self.font = ImageFont.load_default()
        # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
        if check_version(pil_version, "9.2.0"):
            self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
    else:  # use cv2
        assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
        self.im = im if im.flags.writeable else im.copy()
        self.tf = max(self.lw - 1, 1)  # font thickness
        self.sf = self.lw / 3  # font scale
    # Pose
    self.skeleton = [
        [16, 14],
        [14, 12],
        [17, 15],
        [15, 13],
        [12, 13],
        [6, 12],
        [7, 13],
        [6, 7],
        [6, 8],
        [7, 9],
        [8, 10],
        [9, 11],
        [2, 3],
        [1, 2],
        [1, 3],
        [2, 4],
        [3, 5],
        [4, 6],
        [5, 7],
    ]

    self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
    self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

box_label(box, label='', color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False)

Ajoute une case xyxy Ă  l'image avec une Ă©tiquette.

Code source dans ultralytics/utils/plotting.py
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
    """Add one xyxy box to image with label."""
    if isinstance(box, torch.Tensor):
        box = box.tolist()
    if self.pil or not is_ascii(label):
        if rotated:
            p1 = box[0]
            # NOTE: PIL-version polygon needs tuple type.
            self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
        else:
            p1 = (box[0], box[1])
            self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            w, h = self.font.getsize(label)  # text width, height
            outside = p1[1] - h >= 0  # label fits outside box
            self.draw.rectangle(
                (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                fill=color,
            )
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        if rotated:
            p1 = [int(b) for b in box[0]]
            # NOTE: cv2-version polylines needs np.asarray type.
            cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
        else:
            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
            outside = p1[1] - h >= 3
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(
                self.im,
                label,
                (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                0,
                self.sf,
                txt_color,
                thickness=self.tf,
                lineType=cv2.LINE_AA,
            )

count_labels(counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0))

Trace les comptes pour le compteur d'objets.

Paramètres :

Nom Type Description DĂ©faut
counts int

objets compte valeur

0
count_txt_size int

taille du texte pour l'affichage des comptes

2
color tuple

couleur de fond de l'affichage des comptes

(255, 255, 255)
txt_color tuple

couleur du texte de l'affichage des comptes

(0, 0, 0)
Code source dans ultralytics/utils/plotting.py
def count_labels(self, counts=0, count_txt_size=2, color=(255, 255, 255), txt_color=(0, 0, 0)):
    """
    Plot counts for object counter.

    Args:
        counts (int): objects counts value
        count_txt_size (int): text size for counts display
        color (tuple): background color of counts display
        txt_color (tuple): text color of counts display
    """
    self.tf = count_txt_size
    tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
    tf = max(tl - 1, 1)

    # Get text size for in_count and out_count
    t_size_in = cv2.getTextSize(str(counts), 0, fontScale=tl / 2, thickness=tf)[0]

    # Calculate positions for counts label
    text_width = t_size_in[0]
    text_x = (self.im.shape[1] - text_width) // 2  # Center x-coordinate
    text_y = t_size_in[1]

    # Create a rounded rectangle for in_count
    cv2.rectangle(
        self.im, (text_x - 5, text_y - 5), (text_x + text_width + 7, text_y + t_size_in[1] + 7), color, -1
    )
    cv2.putText(
        self.im, str(counts), (text_x, text_y + t_size_in[1]), 0, tl / 2, txt_color, self.tf, lineType=cv2.LINE_AA
    )

draw_centroid_and_tracks(track, color=(255, 0, 255), track_thickness=2)

Dessine un point centroĂŻde et trace des pistes.

Paramètres :

Nom Type Description DĂ©faut
track list

points de repérage des objets pour l'affichage des pistes

requis
color tuple

couleur de la ligne de piste

(255, 0, 255)
track_thickness int

valeur de l'Ă©paisseur de la ligne de piste

2
Code source dans ultralytics/utils/plotting.py
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
    """
    Draw centroid point and track trails.

    Args:
        track (list): object tracking points for trails display
        color (tuple): tracks line color
        track_thickness (int): track line thickness value
    """
    points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
    cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
    cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

draw_region(reg_pts=None, color=(0, 255, 0), thickness=5)

Trace la ligne de la région.

Paramètres :

Nom Type Description DĂ©faut
reg_pts list

Points de la région (pour les points de la ligne 2, pour les points de la région 4)

None
color tuple

Valeur de la couleur de la région

(0, 255, 0)
thickness int

Valeur de l'épaisseur de la surface de la région

5
Code source dans ultralytics/utils/plotting.py
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
    """
    Draw region line.

    Args:
        reg_pts (list): Region Points (for line 2 points, for region 4 points)
        color (tuple): Region Color value
        thickness (int): Region area thickness value
    """
    cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

draw_specific_points(keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2)

Dessine des points clés spécifiques pour le comptage des pas de gymnastique.

Paramètres :

Nom Type Description DĂ©faut
keypoints list

liste des données de points clés à tracer

requis
indices list

liste d'ids des points clés à tracer

[2, 5, 7]
shape tuple

imgsz pour l'inférence du modèle

(640, 640)
radius int

Valeur du rayon du point clé

2
Code source dans ultralytics/utils/plotting.py
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2):
    """
    Draw specific keypoints for gym steps counting.

    Args:
        keypoints (list): list of keypoints data to be plotted
        indices (list): keypoints ids list to be plotted
        shape (tuple): imgsz for model inference
        radius (int): Keypoint radius value
    """
    for i, k in enumerate(keypoints):
        if i in indices:
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < 0.5:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
    return self.im

estimate_pose_angle(a, b, c) staticmethod

Calcule l'angle de pose de l'objet.

Paramètres :

Nom Type Description DĂ©faut
a float)

La valeur du point de pose a

requis
b float

La valeur du point de pose b

requis
c float

La valeur du point de pose c

requis

Retourne :

Nom Type Description
angle degree

Valeur en degrés de l'angle entre trois points

Code source dans ultralytics/utils/plotting.py
@staticmethod
def estimate_pose_angle(a, b, c):
    """
    Calculate the pose angle for object.

    Args:
        a (float) : The value of pose point a
        b (float): The value of pose point b
        c (float): The value o pose point c

    Returns:
        angle (degree): Degree value of angle between three points
    """
    a, b, c = np.array(a), np.array(b), np.array(c)
    radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

fromarray(im)

Met à jour self.im à partir d'un tableau numérique.

Code source dans ultralytics/utils/plotting.py
def fromarray(self, im):
    """Update self.im from a numpy array."""
    self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
    self.draw = ImageDraw.Draw(self.im)

kpts(kpts, shape=(640, 640), radius=5, kpt_line=True)

Trace des points clés sur l'image.

Paramètres :

Nom Type Description DĂ©faut
kpts tensor

Points clés prédits avec la forme [17, 3]. Chaque point clé a (x, y, confiance).

requis
shape tuple

Forme de l'image sous forme de tuple (h, w), oĂą h est la hauteur et w la largeur.

(640, 640)
radius int

Rayon des points clés dessinés. La valeur par défaut est 5.

5
kpt_line bool

Si True, la fonction dessinera des lignes reliant les points clés pour la pose humaine. La valeur par défaut est True.

True
Note

kpt_line=True ne prend actuellement en charge que le tracé des poses humaines.

Code source dans ultralytics/utils/plotting.py
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
    """
    Plot keypoints on the image.

    Args:
        kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
        shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
        radius (int, optional): Radius of the drawn keypoints. Default is 5.
        kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                   for human pose. Default is True.

    Note:
        `kpt_line=True` currently only supports human pose plotting.
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    nkpt, ndim = kpts.shape
    is_pose = nkpt == 17 and ndim in {2, 3}
    kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
    for i, k in enumerate(kpts):
        color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
        x_coord, y_coord = k[0], k[1]
        if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
            if len(k) == 3:
                conf = k[2]
                if conf < 0.5:
                    continue
            cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

    if kpt_line:
        ndim = kpts.shape[-1]
        for i, sk in enumerate(self.skeleton):
            pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
            pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
            if ndim == 3:
                conf1 = kpts[(sk[0] - 1), 2]
                conf2 = kpts[(sk[1] - 1), 2]
                if conf1 < 0.5 or conf2 < 0.5:
                    continue
            if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                continue
            if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                continue
            cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

masks(masks, colors, im_gpu, alpha=0.5, retina_masks=False)

Trace des masques sur l'image.

Paramètres :

Nom Type Description DĂ©faut
masks tensor

Masques prédits sur cuda, forme : [n, h, w]

requis
colors List[List[Int]]

Couleurs pour les masques prédits, [[r, g, b] * n]

requis
im_gpu tensor

L'image est en cuda, shape : [3, h, w], range : [0, 1]

requis
alpha float

Transparence du masque : 0.0 totalement transparent, 1.0 opaque

0.5
retina_masks bool

Utilise ou non des masques à haute résolution. La valeur par défaut est False.

False
Code source dans ultralytics/utils/plotting.py
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
    """
    Plot masks on image.

    Args:
        masks (tensor): Predicted masks on cuda, shape: [n, h, w]
        colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
        im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
        alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
        retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    if len(masks) == 0:
        self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
    if im_gpu.device != masks.device:
        im_gpu = im_gpu.to(masks.device)
    colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
    colors = colors[:, None, None]  # shape(n,1,1,3)
    masks = masks.unsqueeze(3)  # shape(n,h,w,1)
    masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

    inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
    mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

    im_gpu = im_gpu.flip(dims=[0])  # flip channel
    im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
    im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
    im_mask = im_gpu * 255
    im_mask_np = im_mask.byte().cpu().numpy()
    self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

plot_angle_and_count_and_stage(angle_text, count_text, stage_text, center_kpt, line_thickness=2)

Trace l'angle de pose, la valeur de comptage et l'Ă©tape.

Paramètres :

Nom Type Description DĂ©faut
angle_text str

valeur de l'angle pour le suivi de l'entraînement

requis
count_text str

compte la valeur pour le suivi de l'entraînement

requis
stage_text str

décision d'étape pour le suivi de la séance d'entraînement

requis
center_kpt int

indice de pose centroïde pour le suivi de l'entraînement

requis
line_thickness int

Ă©paisseur pour l'affichage du texte

2
Code source dans ultralytics/utils/plotting.py
def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2):
    """
    Plot the pose angle, count value and step stage.

    Args:
        angle_text (str): angle value for workout monitoring
        count_text (str): counts value for workout monitoring
        stage_text (str): stage decision for workout monitoring
        center_kpt (int): centroid pose index for workout monitoring
        line_thickness (int): thickness for text display
    """
    angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
    font_scale = 0.6 + (line_thickness / 10.0)

    # Draw angle
    (angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, font_scale, line_thickness)
    angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
    angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
    angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2))
    cv2.rectangle(
        self.im,
        angle_background_position,
        (
            angle_background_position[0] + angle_background_size[0],
            angle_background_position[1] + angle_background_size[1],
        ),
        (255, 255, 255),
        -1,
    )
    cv2.putText(self.im, angle_text, angle_text_position, 0, font_scale, (0, 0, 0), line_thickness)

    # Draw Counts
    (count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, font_scale, line_thickness)
    count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
    count_background_position = (
        angle_background_position[0],
        angle_background_position[1] + angle_background_size[1] + 5,
    )
    count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2))

    cv2.rectangle(
        self.im,
        count_background_position,
        (
            count_background_position[0] + count_background_size[0],
            count_background_position[1] + count_background_size[1],
        ),
        (255, 255, 255),
        -1,
    )
    cv2.putText(self.im, count_text, count_text_position, 0, font_scale, (0, 0, 0), line_thickness)

    # Draw Stage
    (stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, font_scale, line_thickness)
    stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
    stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
    stage_background_size = (stage_text_width + 10, stage_text_height + 10)

    cv2.rectangle(
        self.im,
        stage_background_position,
        (
            stage_background_position[0] + stage_background_size[0],
            stage_background_position[1] + stage_background_size[1],
        ),
        (255, 255, 255),
        -1,
    )
    cv2.putText(self.im, stage_text, stage_text_position, 0, font_scale, (0, 0, 0), line_thickness)

plot_distance_and_line(distance_m, distance_mm, centroids, line_color, centroid_color)

Reporte la distance et la ligne sur le cadre.

Paramètres :

Nom Type Description DĂ©faut
distance_m float

Distance entre deux centroïdes de bbox en mètres.

requis
distance_mm float

Distance entre deux centroïdes de bbox en millimètres.

requis
centroids list

Données des centroïdes de la boîte de délimitation.

requis
line_color RGB

Couleur de la ligne de distance.

requis
centroid_color RGB

Couleur du centroïde de la boîte de délimitation.

requis
Code source dans ultralytics/utils/plotting.py
def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
    """
    Plot the distance and line on frame.

    Args:
        distance_m (float): Distance between two bbox centroids in meters.
        distance_mm (float): Distance between two bbox centroids in millimeters.
        centroids (list): Bounding box centroids data.
        line_color (RGB): Distance line color.
        centroid_color (RGB): Bounding box centroid color.
    """
    (text_width_m, text_height_m), _ = cv2.getTextSize(
        f"Distance M: {distance_m:.2f}m", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
    )
    cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), (255, 255, 255), -1)
    cv2.putText(
        self.im,
        f"Distance M: {distance_m:.2f}m",
        (20, 50),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.8,
        (0, 0, 0),
        2,
        cv2.LINE_AA,
    )

    (text_width_mm, text_height_mm), _ = cv2.getTextSize(
        f"Distance MM: {distance_mm:.2f}mm", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2
    )
    cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), (255, 255, 255), -1)
    cv2.putText(
        self.im,
        f"Distance MM: {distance_mm:.2f}mm",
        (20, 100),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.8,
        (0, 0, 0),
        2,
        cv2.LINE_AA,
    )

    cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
    cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
    cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

rectangle(xy, fill=None, outline=None, width=1)

Ajoute un rectangle Ă  l'image (PIL uniquement).

Code source dans ultralytics/utils/plotting.py
def rectangle(self, xy, fill=None, outline=None, width=1):
    """Add rectangle to image (PIL-only)."""
    self.draw.rectangle(xy, fill, outline, width)

result()

Retourne l'image annotée sous forme de tableau.

Code source dans ultralytics/utils/plotting.py
def result(self):
    """Return annotated image as array."""
    return np.asarray(self.im)

save(filename='image.jpg')

Enregistre l'image annotée dans 'nom de fichier'.

Code source dans ultralytics/utils/plotting.py
def save(self, filename="image.jpg"):
    """Save the annotated image to 'filename'."""
    cv2.imwrite(filename, np.asarray(self.im))

seg_bbox(mask, mask_color=(255, 0, 255), det_label=None, track_label=None)

Fonction permettant de dessiner un objet segmenté sous la forme d'une boîte de délimitation.

Paramètres :

Nom Type Description DĂ©faut
mask list

liste de données de masques pour la segmentation de l'instance tracé de la zone

requis
mask_color tuple

couleur d'avant-plan du masque

(255, 0, 255)
det_label str

Texte de l'étiquette de détection

None
track_label str

Texte de l'Ă©tiquette de suivi

None
Code source dans ultralytics/utils/plotting.py
def seg_bbox(self, mask, mask_color=(255, 0, 255), det_label=None, track_label=None):
    """
    Function for drawing segmented object in bounding box shape.

    Args:
        mask (list): masks data list for instance segmentation area plotting
        mask_color (tuple): mask foreground color
        det_label (str): Detection label text
        track_label (str): Tracking label text
    """
    cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)

    label = f"Track ID: {track_label}" if track_label else det_label
    text_size, _ = cv2.getTextSize(label, 0, 0.7, 1)

    cv2.rectangle(
        self.im,
        (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
        (int(mask[0][0]) + text_size[0] // 2 + 5, int(mask[0][1] + 5)),
        mask_color,
        -1,
    )

    cv2.putText(
        self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1]) - 5), 0, 0.7, (255, 255, 255), 2
    )

show(title=None)

Montre l'image annotée.

Code source dans ultralytics/utils/plotting.py
def show(self, title=None):
    """Show the annotated image."""
    Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)

text(xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False)

Ajoute du texte Ă  une image en utilisant PIL ou cv2.

Code source dans ultralytics/utils/plotting.py
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
    """Adds text to an image using PIL or cv2."""
    if anchor == "bottom":  # start y from font bottom
        w, h = self.font.getsize(text)  # text width, height
        xy[1] += 1 - h
    if self.pil:
        if box_style:
            w, h = self.font.getsize(text)
            self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        if "\n" in text:
            lines = text.split("\n")
            _, h = self.font.getsize(text)
            for line in lines:
                self.draw.text(xy, line, fill=txt_color, font=self.font)
                xy[1] += h
        else:
            self.draw.text(xy, text, fill=txt_color, font=self.font)
    else:
        if box_style:
            w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
            outside = xy[1] - h >= 3
            p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
            cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

visioneye(box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10)

Fonction de cartographie et de traçage de l'œil en vision humaine.

Paramètres :

Nom Type Description DĂ©faut
box list

Coordonnées du cadre de délimitation

requis
center_point tuple

point central de la vision vue de l'oeil

requis
color tuple

centroĂŻde de l'objet et valeur de la couleur de la ligne

(235, 219, 11)
pin_color tuple

visioneye point valeur de la couleur

(255, 0, 255)
thickness int

valeur int pour l'Ă©paisseur de la ligne

2
pins_radius int

valeur du rayon du point visioneye

10
Code source dans ultralytics/utils/plotting.py
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255), thickness=2, pins_radius=10):
    """
    Function for pinpoint human-vision eye mapping and plotting.

    Args:
        box (list): Bounding box coordinates
        center_point (tuple): center point for vision eye view
        color (tuple): object centroid and line color value
        pin_color (tuple): visioneye point color value
        thickness (int): int value for line thickness
        pins_radius (int): visioneye point radius value
    """
    center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
    cv2.circle(self.im, center_point, pins_radius, pin_color, -1)
    cv2.circle(self.im, center_bbox, pins_radius, color, -1)
    cv2.line(self.im, center_point, center_bbox, color, thickness)



ultralytics.utils.plotting.plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None)

Trace les étiquettes d'entraînement, y compris les histogrammes de classe et les statistiques de boîte.

Code source dans ultralytics/utils/plotting.py
@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
    """Plot training labels including class histograms and box statistics."""
    import pandas as pd
    import seaborn as sn

    # Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
    warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
    warnings.filterwarnings("ignore", category=FutureWarning)

    # Plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    nc = int(cls.max() + 1)  # number of classes
    boxes = boxes[:1000000]  # limit to 1M boxes
    x = pd.DataFrame(boxes, columns=["x", "y", "width", "height"])

    # Seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
    plt.close()

    # Matplotlib labels
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    for i in range(nc):
        y[2].patches[i].set_color([x / 255 for x in colors(i)])
    ax[0].set_ylabel("instances")
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel("classes")
    sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)

    # Rectangles
    boxes[:, 0:2] = 0.5  # center
    boxes = ops.xywh2xyxy(boxes) * 1000
    img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
    for cls, box in zip(cls[:500], boxes[:500]):
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis("off")

    for a in [0, 1, 2, 3]:
        for s in ["top", "right", "left", "bottom"]:
            ax[a].spines[s].set_visible(False)

    fname = save_dir / "labels.jpg"
    plt.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True)

Sauvegarde le recadrage de l'image en tant que {fichier} avec une taille de recadrage multiple {gain} et {pad} pixels. Sauvegarde et/ou renvoie le recadrage.

Cette fonction prend une boîte de délimitation et une image, puis enregistre une partie recadrée de l'image en fonction de la boîte de délimitation. selon la boîte de délimitation. En option, le rognage peut être quadrillé, et la fonction permet d'ajuster le gain et le remplissage de la boîte de délimitation. de la boîte de délimitation.

Paramètres :

Nom Type Description DĂ©faut
xyxy Tensor or list

Un tensor ou une liste représentant la boîte de délimitation au format xyxy.

requis
im ndarray

L'image d'entrée.

requis
file Path

Le chemin où l'image recadrée sera enregistrée. La valeur par défaut est "im.jpg".

Path('im.jpg')
gain float

Un facteur multiplicatif pour augmenter la taille de la boîte de délimitation. La valeur par défaut est 1,02.

1.02
pad int

Le nombre de pixels à ajouter à la largeur et à la hauteur de la boîte de délimitation. La valeur par défaut est 10.

10
square bool

Si True, la boîte de délimitation sera transformée en carré. La valeur par défaut est False.

False
BGR bool

Si True, l'image sera enregistrée au format BGR, sinon au format RGB. La valeur par défaut est False.

False
save bool

Si True, l'image recadrée sera enregistrée sur le disque. La valeur par défaut est True.

True

Retourne :

Type Description
ndarray

L'image recadrée.

Exemple
from ultralytics.utils.plotting import save_one_box

xyxy = [50, 50, 150, 150]
im = cv2.imread('image.jpg')
cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
Code source dans ultralytics/utils/plotting.py
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
    """
    Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.

    This function takes a bounding box and an image, and then saves a cropped portion of the image according
    to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
    adjustments to the bounding box.

    Args:
        xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
        im (numpy.ndarray): The input image.
        file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
        gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
        pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
        square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
        BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
        save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.

    Returns:
        (numpy.ndarray): The cropped image.

    Example:
        ```python
        from ultralytics.utils.plotting import save_one_box

        xyxy = [50, 50, 150, 150]
        im = cv2.imread('image.jpg')
        cropped_im = save_one_box(xyxy, im, file='cropped.jpg', square=True)
        ```
    """

    if not isinstance(xyxy, torch.Tensor):  # may be list
        xyxy = torch.stack(xyxy)
    b = ops.xyxy2xywh(xyxy.view(-1, 4))  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = ops.xywh2xyxy(b).long()
    xyxy = ops.clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix(".jpg"))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop



ultralytics.utils.plotting.plot_images(images, batch_idx, cls, bboxes=np.zeros(0, dtype=np.float32), confs=None, masks=np.zeros(0, dtype=np.uint8), kpts=np.zeros((0, 51), dtype=np.float32), paths=None, fname='images.jpg', names=None, on_plot=None, max_subplots=16, save=True, conf_thres=0.25)

Trace une grille d'images avec des Ă©tiquettes.

Code source dans ultralytics/utils/plotting.py
@threaded
def plot_images(
    images,
    batch_idx,
    cls,
    bboxes=np.zeros(0, dtype=np.float32),
    confs=None,
    masks=np.zeros(0, dtype=np.uint8),
    kpts=np.zeros((0, 51), dtype=np.float32),
    paths=None,
    fname="images.jpg",
    names=None,
    on_plot=None,
    max_subplots=16,
    save=True,
    conf_thres=0.25,
):
    """Plot image grid with labels."""
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(kpts, torch.Tensor):
        kpts = kpts.cpu().numpy()
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    max_size = 1920  # max image size
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(cls) > 0:
            idx = batch_idx == i
            classes = cls[idx].astype("int")
            labels = confs is None

            if len(bboxes):
                boxes = bboxes[idx]
                conf = confs[idx] if confs is not None else None  # check for confidence presence (label vs pred)
                is_obb = boxes.shape[-1] == 5  # xywhr
                boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
                if len(boxes):
                    if boxes[:, :4].max() <= 1.1:  # if normalized with tolerance 0.1
                        boxes[..., 0::2] *= w  # scale to pixels
                        boxes[..., 1::2] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        boxes[..., :4] *= scale
                boxes[..., 0::2] += x
                boxes[..., 1::2] += y
                for j, box in enumerate(boxes.astype(np.int64).tolist()):
                    c = classes[j]
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    if labels or conf[j] > conf_thres:
                        label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
                        annotator.box_label(box, label, color=color, rotated=is_obb)

            elif len(classes):
                for c in classes:
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    annotator.text((x, y), f"{c}", txt_color=color, box_style=True)

            # Plot keypoints
            if len(kpts):
                kpts_ = kpts[idx].copy()
                if len(kpts_):
                    if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:  # if normalized with tolerance .01
                        kpts_[..., 0] *= w  # scale to pixels
                        kpts_[..., 1] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        kpts_ *= scale
                kpts_[..., 0] += x
                kpts_[..., 1] += y
                for j in range(len(kpts_)):
                    if labels or conf[j] > conf_thres:
                        annotator.kpts(kpts_[j])

            # Plot masks
            if len(masks):
                if idx.shape[0] == masks.shape[0]:  # overlap_masks=False
                    image_masks = masks[idx]
                else:  # overlap_masks=True
                    image_masks = masks[[i]]  # (1, 640, 640)
                    nl = idx.sum()
                    index = np.arange(nl).reshape((nl, 1, 1)) + 1
                    image_masks = np.repeat(image_masks, nl, axis=0)
                    image_masks = np.where(image_masks == index, 1.0, 0.0)

                im = np.asarray(annotator.im).copy()
                for j in range(len(image_masks)):
                    if labels or conf[j] > conf_thres:
                        color = colors(classes[j])
                        mh, mw = image_masks[j].shape
                        if mh != h or mw != w:
                            mask = image_masks[j].astype(np.uint8)
                            mask = cv2.resize(mask, (w, h))
                            mask = mask.astype(bool)
                        else:
                            mask = image_masks[j].astype(bool)
                        with contextlib.suppress(Exception):
                            im[y : y + h, x : x + w, :][mask] = (
                                im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
                            )
                annotator.fromarray(im)
    if not save:
        return np.asarray(annotator.im)
    annotator.im.save(fname)  # save
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None)

Trace les résultats de l'entraînement à partir d'un fichier CSV de résultats. La fonction prend en charge différents types de données, y compris la segmentation, l'estimation de la pose et la classification, l'estimation de la pose et la classification. Les tracés sont enregistrés sous le nom de "results.png" dans le répertoire où se trouve le fichier CSV.

Paramètres :

Nom Type Description DĂ©faut
file str

Chemin d'accès au fichier CSV contenant les résultats de la formation. La valeur par défaut est 'path/to/results.csv'.

'path/to/results.csv'
dir str

Répertoire où se trouve le fichier CSV si 'file' n'est pas fourni. La valeur par défaut est ''.

''
segment bool

Drapeau indiquant si les données sont destinées à la segmentation. La valeur par défaut est False.

False
pose bool

Drapeau indiquant si les données sont destinées à l'estimation de la pose. La valeur par défaut est False.

False
classify bool

Drapeau indiquant si les données sont destinées à être classées. La valeur par défaut est False.

False
on_plot callable

Fonction de rappel à exécuter après le traçage. Prend le nom du fichier comme argument. La valeur par défaut est None.

None
Exemple
from ultralytics.utils.plotting import plot_results

plot_results('path/to/results.csv', segment=True)
Code source dans ultralytics/utils/plotting.py
@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
    """
    Plot training results from a results CSV file. The function supports various types of data including segmentation,
    pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.

    Args:
        file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
        dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
        segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
        pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
        classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
        on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
            Defaults to None.

    Example:
        ```python
        from ultralytics.utils.plotting import plot_results

        plot_results('path/to/results.csv', segment=True)
        ```
    """
    import pandas as pd
    from scipy.ndimage import gaussian_filter1d

    save_dir = Path(file).parent if file else Path(dir)
    if classify:
        fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
        index = [1, 4, 2, 3]
    elif segment:
        fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
    elif pose:
        fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
    else:
        fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
    ax = ax.ravel()
    files = list(save_dir.glob("results*.csv"))
    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate(index):
                y = data.values[:, j].astype("float")
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
    ax[1].legend()
    fname = save_dir / "results.png"
    fig.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



ultralytics.utils.plotting.plt_color_scatter(v, f, bins=20, cmap='viridis', alpha=0.8, edgecolors='none')

Trace un diagramme de dispersion dont les points sont colorés en fonction d'un histogramme 2D.

Paramètres :

Nom Type Description DĂ©faut
v array - like

Valeurs pour l'axe des x.

requis
f array - like

Valeurs pour l'axe des y.

requis
bins int

Nombre de cellules pour l'histogramme. La valeur par défaut est 20.

20
cmap str

Carte de couleurs pour le diagramme de dispersion. La valeur par défaut est "viridis".

'viridis'
alpha float

Alpha pour le diagramme de dispersion. La valeur par défaut est 0,8.

0.8
edgecolors str

Couleurs des bords du diagramme de dispersion. La valeur par défaut est "none".

'none'

Exemples :

>>> v = np.random.rand(100)
>>> f = np.random.rand(100)
>>> plt_color_scatter(v, f)
Code source dans ultralytics/utils/plotting.py
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
    """
    Plots a scatter plot with points colored based on a 2D histogram.

    Args:
        v (array-like): Values for the x-axis.
        f (array-like): Values for the y-axis.
        bins (int, optional): Number of bins for the histogram. Defaults to 20.
        cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
        alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
        edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.

    Examples:
        >>> v = np.random.rand(100)
        >>> f = np.random.rand(100)
        >>> plt_color_scatter(v, f)
    """

    # Calculate 2D histogram and corresponding colors
    hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
    colors = [
        hist[
            min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
            min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
        ]
        for i in range(len(v))
    ]

    # Scatter plot
    plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)



ultralytics.utils.plotting.plot_tune_results(csv_file='tune_results.csv')

Trace les résultats de l'évolution stockés dans un fichier 'tune_results.csv'. La fonction génère un diagramme de dispersion pour chaque clé dans le fichier CSV, avec un code couleur basé sur les scores d'aptitude. Les configurations les plus performantes sont mises en évidence sur les graphiques.

Paramètres :

Nom Type Description DĂ©faut
csv_file str

Chemin d'accès au fichier CSV contenant les résultats de l'accord. La valeur par défaut est 'tune_results.csv'.

'tune_results.csv'

Exemples :

>>> plot_tune_results('path/to/tune_results.csv')
Code source dans ultralytics/utils/plotting.py
def plot_tune_results(csv_file="tune_results.csv"):
    """
    Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
    in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.

    Args:
        csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.

    Examples:
        >>> plot_tune_results('path/to/tune_results.csv')
    """

    import pandas as pd
    from scipy.ndimage import gaussian_filter1d

    # Scatter plots for each hyperparameter
    csv_file = Path(csv_file)
    data = pd.read_csv(csv_file)
    num_metrics_columns = 1
    keys = [x.strip() for x in data.columns][num_metrics_columns:]
    x = data.values
    fitness = x[:, 0]  # fitness
    j = np.argmax(fitness)  # max fitness index
    n = math.ceil(len(keys) ** 0.5)  # columns and rows in plot
    plt.figure(figsize=(10, 10), tight_layout=True)
    for i, k in enumerate(keys):
        v = x[:, i + num_metrics_columns]
        mu = v[j]  # best single result
        plt.subplot(n, n, i + 1)
        plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
        plt.plot(mu, fitness.max(), "k+", markersize=15)
        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
        plt.tick_params(axis="both", labelsize=8)  # Set axis label size to 8
        if i % n != 0:
            plt.yticks([])

    file = csv_file.with_name("tune_scatter_plots.png")  # filename
    plt.savefig(file, dpi=200)
    plt.close()
    LOGGER.info(f"Saved {file}")

    # Fitness vs iteration
    x = range(1, len(fitness) + 1)
    plt.figure(figsize=(10, 6), tight_layout=True)
    plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
    plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2)  # smoothing line
    plt.title("Fitness vs Iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Fitness")
    plt.grid(True)
    plt.legend()

    file = csv_file.with_name("tune_fitness.png")  # filename
    plt.savefig(file, dpi=200)
    plt.close()
    LOGGER.info(f"Saved {file}")



ultralytics.utils.plotting.output_to_target(output, max_det=300)

Convertit les résultats du modèle au format cible [batch_id, class_id, x, y, w, h, conf] pour le traçage.

Code source dans ultralytics/utils/plotting.py
def output_to_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]



ultralytics.utils.plotting.output_to_rotated_target(output, max_det=300)

Convertit les résultats du modèle au format cible [batch_id, class_id, x, y, w, h, conf] pour le traçage.

Code source dans ultralytics/utils/plotting.py
def output_to_rotated_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, box, angle, conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]



ultralytics.utils.plotting.feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp'))

Visualise les cartes de caractéristiques d'un module de modèle donné pendant l'inférence.

Paramètres :

Nom Type Description DĂ©faut
x Tensor

Caractéristiques à visualiser.

requis
module_type str

Type de module.

requis
stage int

Étape du module au sein du modèle.

requis
n int

Nombre maximum de cartes de caractéristiques à tracer. La valeur par défaut est 32.

32
save_dir Path

Répertoire pour enregistrer les résultats. La valeur par défaut est Path('runs/detect/exp').

Path('runs/detect/exp')
Code source dans ultralytics/utils/plotting.py
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
    """
    Visualize feature maps of a given model module during inference.

    Args:
        x (torch.Tensor): Features to be visualized.
        module_type (str): Module type.
        stage (int): Module stage within the model.
        n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
        save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
    """
    for m in ["Detect", "Pose", "Segment"]:
        if m in module_type:
            return
    _, channels, height, width = x.shape  # batch, channels, height, width
    if height > 1 and width > 1:
        f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

        blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
        n = min(n, channels)  # number of plots
        _, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
        ax = ax.ravel()
        plt.subplots_adjust(wspace=0.05, hspace=0.05)
        for i in range(n):
            ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
            ax[i].axis("off")

        LOGGER.info(f"Saving {f}... ({n}/{channels})")
        plt.savefig(f, dpi=300, bbox_inches="tight")
        plt.close()
        np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save





Créé le 2023-11-12, Mis à jour le 2024-01-05
Auteurs : glenn-jocher (4), Laughing-q (1)