Vai al contenuto

Advanced Data Visualization: Heatmaps using Ultralytics YOLO11 🚀

Introduzione alle mappe di calore

A heatmap generated with Ultralytics YOLO11 transforms complex data into a vibrant, color-coded matrix. This visual tool employs a spectrum of colors to represent varying data values, where warmer hues indicate higher intensities and cooler tones signify lower values. Heatmaps excel in visualizing intricate data patterns, correlations, and anomalies, offering an accessible and engaging approach to data interpretation across diverse domains.



Guarda: Heatmaps using Ultralytics YOLO11

Perché scegliere le Heatmap per l'analisi dei dati?

  • Visualizzazione intuitiva della distribuzione dei dati: Le Heatmap semplificano la comprensione della concentrazione e della distribuzione dei dati, convertendo insiemi di dati complessi in formati visivi di facile comprensione.
  • Rilevamento efficiente dei pattern: Visualizzando i dati in formato heatmap, diventa più facile individuare tendenze, cluster e anomalie, facilitando analisi e approfondimenti più rapidi.
  • Miglioramento dell'analisi spaziale e del processo decisionale: le mappe di calore sono fondamentali per illustrare le relazioni spaziali, aiutando i processi decisionali in settori come la business intelligence, gli studi ambientali e la pianificazione urbana.

Applicazioni nel mondo reale

Trasporto Vendita al dettaglio
Ultralytics YOLO11 Transportation Heatmap Ultralytics YOLO11 Retail Heatmap
Ultralytics YOLO11 Transportation Heatmap Ultralytics YOLO11 Retail Heatmap

Heatmaps using Ultralytics YOLO11 Example

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,
    model="yolo11n.pt",
    colormap=cv2.COLORMAP_PARULA,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# line for object counting
line_points = [(20, 400), (1080, 404)]

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,
    model="yolo11n.pt",
    colormap=cv2.COLORMAP_PARULA,
    region=line_points,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define polygon points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,
    model="yolo11n.pt",
    colormap=cv2.COLORMAP_PARULA,
    region=region_points,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,
    model="yolo11n.pt",
    colormap=cv2.COLORMAP_PARULA,
    region=region_points,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init heatmap
heatmap = solutions.Heatmap(
    show=True,
    model="yolo11n.pt",
    classes=[0, 2],
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    im0 = heatmap.generate_heatmap(im0)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()

Argomenti Heatmap()

Nome Tipo Predefinito Descrizione
colormap int cv2.COLORMAP_JET Mappa dei colori da utilizzare per la mappa di calore.
show bool False Se visualizzare l'immagine con la sovrapposizione della mappa di calore.
show_in bool True Se visualizzare il conteggio degli oggetti che entrano nella regione.
show_out bool True Se visualizzare il conteggio degli oggetti che escono dalla regione.
region list None Punti che definiscono la regione di conteggio (una linea o un poligono).
line_width int 2 Spessore delle linee utilizzate nel disegno.

Argomenti model.track

Argomento Tipo Predefinito Descrizione
source str None Specifies the source directory for images or videos. Supports file paths and URLs.
persist bool False Enables persistent tracking of objects between frames, maintaining IDs across video sequences.
tracker str botsort.yaml Specifies the tracking algorithm to use, e.g., bytetrack.yaml o botsort.yaml.
conf float 0.3 Sets the confidence threshold for detections; lower values allow more objects to be tracked but may include false positives.
iou float 0.5 Sets the Intersection over Union (IoU) threshold for filtering overlapping detections.
classes list None Filters results by class index. For example, classes=[0, 2, 3] only tracks the specified classes.
verbose bool True Controls the display of tracking results, providing a visual output of tracked objects.

Heatmap COLORMAPs

Nome della mappa dei colori Descrizione
cv::COLORMAP_AUTUMN Mappa dei colori autunnali
cv::COLORMAP_BONE Mappa dei colori delle ossa
cv::COLORMAP_JET Mappa dei colori del getto
cv::COLORMAP_WINTER Mappa dei colori invernali
cv::COLORMAP_RAINBOW Mappa dei colori dell'arcobaleno
cv::COLORMAP_OCEAN Mappa dei colori dell'oceano
cv::COLORMAP_SUMMER Mappa dei colori estivi
cv::COLORMAP_SPRING Mappa dei colori della primavera
cv::COLORMAP_COOL Una bella mappa a colori
cv::COLORMAP_HSV Mappa di colore HSV (Tonalità, Saturazione, Valore)
cv::COLORMAP_PINK Mappa a colori rosa
cv::COLORMAP_HOT Mappa dei colori caldi
cv::COLORMAP_PARULA Mappa dei colori della Parula
cv::COLORMAP_MAGMA Mappa dei colori del magma
cv::COLORMAP_INFERNO Mappa a colori di Inferno
cv::COLORMAP_PLASMA Mappa dei colori del plasma
cv::COLORMAP_VIRIDIS Mappa a colori di Viridis
cv::COLORMAP_CIVIDIS Mappa a colori di Cividis
cv::COLORMAP_TWILIGHT Mappa a colori del crepuscolo
cv::COLORMAP_TWILIGHT_SHIFTED Mappa dei colori del Crepuscolo spostata
cv::COLORMAP_TURBO Mappa dei colori del turbo
cv::COLORMAP_DEEPGREEN Mappa dei colori verde intenso

Queste mappe di colore sono comunemente utilizzate per visualizzare i dati con rappresentazioni di colori diversi.

DOMANDE FREQUENTI

How does Ultralytics YOLO11 generate heatmaps and what are their benefits?

Ultralytics YOLO11 generates heatmaps by transforming complex data into a color-coded matrix where different hues represent data intensities. Heatmaps make it easier to visualize patterns, correlations, and anomalies in the data. Warmer hues indicate higher values, while cooler tones represent lower values. The primary benefits include intuitive visualization of data distribution, efficient pattern detection, and enhanced spatial analysis for decision-making. For more details and configuration options, refer to the Heatmap Configuration section.

Can I use Ultralytics YOLO11 to perform object tracking and generate a heatmap simultaneously?

Yes, Ultralytics YOLO11 supports object tracking and heatmap generation concurrently. This can be achieved through its Heatmap solution integrated with object tracking models. To do so, you need to initialize the heatmap object and use YOLO11's tracking capabilities. Here's a simple example:

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, show=True, model="yolo11n.pt")

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    im0 = heatmap.generate_heatmap(im0)
    cv2.imshow("Heatmap", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

Per ulteriori indicazioni, consulta la pagina della modalità di tracciamento.

What makes Ultralytics YOLO11 heatmaps different from other data visualization tools like those from OpenCV or Matplotlib?

Ultralytics YOLO11 heatmaps are specifically designed for integration with its object detection and tracking models, providing an end-to-end solution for real-time data analysis. Unlike generic visualization tools like OpenCV or Matplotlib, YOLO11 heatmaps are optimized for performance and automated processing, supporting features like persistent tracking, decay factor adjustment, and real-time video overlay. For more information on YOLO11's unique features, visit the Ultralytics YOLO11 Introduction.

How can I visualize only specific object classes in heatmaps using Ultralytics YOLO11?

Puoi visualizzare classi di oggetti specifiche specificando le classi desiderate nel campo track() del modello YOLO . Ad esempio, se vuoi visualizzare solo le automobili e le persone (supponendo che i loro indici di classe siano 0 e 2), puoi impostare il metodo classes di conseguenza.

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap = solutions.Heatmap(show=True, model="yolo11n.pt", classes=[0, 2])

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    im0 = heatmap.generate_heatmap(im0)
    cv2.imshow("Heatmap", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

Why should businesses choose Ultralytics YOLO11 for heatmap generation in data analysis?

Ultralytics YOLO11 offers seamless integration of advanced object detection and real-time heatmap generation, making it an ideal choice for businesses looking to visualize data more effectively. The key advantages include intuitive data distribution visualization, efficient pattern detection, and enhanced spatial analysis for better decision-making. Additionally, YOLO11's cutting-edge features such as persistent tracking, customizable colormaps, and support for various export formats make it superior to other tools like TensorFlow and OpenCV for comprehensive data analysis. Learn more about business applications at Ultralytics Plans.


📅 Created 10 months ago ✏️ Updated 1 day ago

Commenti