Vai al contenuto

VisionEye Visualizza la mappatura degli oggetti utilizzando Ultralytics YOLOv8 🚀

Che cos'è la mappatura degli oggetti di VisionEye?

Ultralytics YOLOv8 VisionEye offre ai computer la possibilità di identificare e individuare gli oggetti, simulando la precisione di osservazione dell'occhio umano. Questa funzionalità consente ai computer di individuare e mettere a fuoco oggetti specifici, proprio come l'occhio umano osserva i dettagli da un particolare punto di vista.

Campioni

Vista VisionEye Vista VisionEye con tracciamento degli oggetti
VisionEye visualizza la mappatura degli oggetti utilizzando Ultralytics YOLOv8 VisionEye Visualizza la mappatura degli oggetti con il tracciamento degli oggetti utilizzando Ultralytics YOLOv8
VisionEye visualizza la mappatura degli oggetti utilizzando Ultralytics YOLOv8 VisionEye Visualizza la mappatura degli oggetti con il tracciamento degli oggetti utilizzando Ultralytics YOLOv8

Mappatura degli oggetti di VisionEye con YOLOv8

import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator

model = YOLO("yolov8n.pt")
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0)
    boxes = results[0].boxes.xyxy.cpu()
    clss = results[0].boxes.cls.cpu().tolist()

    annotator = Annotator(im0, line_width=2)

    for box, cls in zip(boxes, clss):
        annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
        annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)
    boxes = results[0].boxes.xyxy.cpu()

    if results[0].boxes.id is not None:
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for box, track_id in zip(boxes, track_ids):
            annotator.box_label(box, label=str(track_id), color=colors(int(track_id)))
            annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

visioneye Argomenti

Nome Tipo Predefinito Descrizione
color tuple (235, 219, 11) Colore del centroide della linea e dell'oggetto
pin_color tuple (255, 0, 255) VisionEye colore pinpoint
thickness int 2 punta di spillo sullo spessore della linea dell'oggetto
pins_radius int 10 Raggio del cerchio del punto e del centroide dell'oggetto

Nota

Per qualsiasi chiarimento, non esitare a postare le tue domande nella sezione Problemi diUltralytics o nella sezione di discussione indicata di seguito.



Creato 2023-12-18, Aggiornato 2024-01-15
Autori: glenn-jocher (5), chr043416@gmail.com (1)

Commenti