Utilità semplici
Il ultralytics
è dotato di una miriade di utility che possono supportare, migliorare e velocizzare i tuoi flussi di lavoro. Ce ne sono molte altre disponibili, ma eccone alcune che saranno utili alla maggior parte degli sviluppatori. Sono anche un ottimo punto di riferimento da utilizzare quando si impara a programmare.
Guarda: Ultralytics Utilità | Annotazione automatica, API Explorer e Conversione di set di dati
Dati
YOLO Esploratore di dati
YOLO Esploratore è stato aggiunto nella sezione 8.1.0
e rappresenta un potente strumento che puoi utilizzare per comprendere meglio il tuo set di dati. Una delle funzioni chiave di YOLO Explorer è la possibilità di utilizzare query di testo per trovare istanze di oggetti nel tuo set di dati.
Etichettatura automatica / Annotazioni
L'annotazione dei dataset è un processo che richiede molte risorse e molto tempo. Se disponi di un modello di rilevamento degli oggetti YOLO addestrato su una quantità ragionevole di dati, puoi utilizzarlo e SAM per auto-annotarsi i dati aggiuntivi (formato di segmentazione).
from ultralytics.data.annotator import auto_annotate
auto_annotate( # (1)!
data="path/to/new/data",
det_model="yolov8n.pt",
sam_model="mobile_sam.pt",
device="cuda",
output_dir="path/to/save_labels",
)
-
Questa funzione non restituisce nulla
-
Vedi la sezione di riferimento per
annotator.auto_annotate
per maggiori informazioni sul funzionamento della funzione. -
Utilizzalo in combinazione con il funzione
segments2boxes
per generare anche i riquadri di delimitazione per il rilevamento degli oggetti
Convertire le maschere di segmentazione nel formato YOLO
Si usa per convertire un set di immagini di maschere di segmentazione nel formato YOLO
formato di segmentazione.
Questa funzione prende la directory contenente le immagini della maschera in formato binario e le converte nel formato di segmentazione YOLO .
Le maschere convertite saranno salvate nella directory di output specificata.
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80)
Convertire COCO in formato YOLO
Da utilizzare per convertire le annotazioni COCO JSON nel formato corretto di YOLO . Per i dataset di rilevamento di oggetti (bounding box), use_segments
e use_keypoints
dovrebbero essere entrambi False
from ultralytics.data.converter import convert_coco
convert_coco( # (1)!
"../datasets/coco/annotations/",
use_segments=False,
use_keypoints=False,
cls91to80=True,
)
- Questa funzione non restituisce nulla
Per ulteriori informazioni su convert_coco
funzione, visita la pagina di riferimento
Ottieni le dimensioni del rettangolo di selezione
from ultralytics.utils.plotting import Annotator
from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt') # Load pretrain or fine-tune model
# Process the image
source = cv2.imread('path/to/image.jpg')
results = model(source)
# Extract results
annotator = Annotator(source, example=model.names)
for box in results[0].boxes.xyxy.cpu():
width, height, area = annotator.get_bbox_dimension(box)
print("Bounding Box Width {}, Height {}, Area {}".format(
width.item(), height.item(), area.item()))
Convertire le caselle di delimitazione in segmenti
Con l'esistente x y w h
i dati del riquadro di delimitazione, convertirli in segmenti utilizzando la funzione yolo_bbox2segment
funzione. I file delle immagini e delle annotazioni devono essere organizzati in questo modo:
data
|__ images
├─ 001.jpg
├─ 002.jpg
├─ ..
└─ NNN.jpg
|__ labels
├─ 001.txt
├─ 002.txt
├─ ..
└─ NNN.txt
from ultralytics.data.converter import yolo_bbox2segment
yolo_bbox2segment( # (1)!
im_dir="path/to/images",
save_dir=None, # saved to "labels-segment" in images directory
sam_model="sam_b.pt",
)
- Questa funzione non restituisce nulla
Visita il sito yolo_bbox2segment
pagina di riferimento per maggiori informazioni sulla funzione.
Convertire i segmenti in caselle di delimitazione
Se hai un set di dati che utilizza il metodo formato del set di dati di segmentazione puoi facilmente convertirli in caselle di delimitazione in alto a destra (o orizzontali) (x y w h
) con questa funzione.
import numpy as np
from ultralytics.utils.ops import segments2boxes
segments = np.array(
[
[805, 392, 797, 400, ..., 808, 714, 808, 392],
[115, 398, 113, 400, ..., 150, 400, 149, 298],
[267, 412, 265, 413, ..., 300, 413, 299, 412],
]
)
segments2boxes([s.reshape(-1, 2) for s in segments])
# >>> array([[ 741.66, 631.12, 133.31, 479.25],
# [ 146.81, 649.69, 185.62, 502.88],
# [ 281.81, 636.19, 118.12, 448.88]],
# dtype=float32) # xywh bounding boxes
Per capire come funziona questa funzione, visita la pagina di riferimento
Utilità
Compressione di immagini
Comprime un singolo file immagine in dimensioni ridotte preservandone il rapporto d'aspetto e la qualità. Se l'immagine in ingresso è più piccola della dimensione massima, non verrà ridimensionata.
from pathlib import Path
from ultralytics.data.utils import compress_one_image
for f in Path("path/to/dataset").rglob("*.jpg"):
compress_one_image(f) # (1)!
- Questa funzione non restituisce nulla
Set di dati auto-split
Dividi automaticamente un set di dati in train
/val
/test
e salvare le suddivisioni risultanti in autosplit_*.txt
file. Questa funzione utilizzerà un campionamento casuale, che non è previsto quando si utilizza il metodo fraction
argomento per la formazione.
from ultralytics.data.utils import autosplit
autosplit( # (1)!
path="path/to/images",
weights=(0.9, 0.1, 0.0), # (train, validation, test) fractional splits
annotated_only=False, # split only images with annotation file when True
)
- Questa funzione non restituisce nulla
Per ulteriori dettagli su questa funzione, consulta la pagina di riferimento.
Da segmento-poligono a maschera binaria
Converte un singolo poligono (come elenco) in una maschera binaria della dimensione dell'immagine specificata. Poligono sotto forma di [N, 2]
con N
come il numero di (x, y)
punti che definiscono il contorno del poligono.
Avvertenze
N
deve sempre essere pari.
import numpy as np
from ultralytics.data.utils import polygon2mask
imgsz = (1080, 810)
polygon = np.array([805, 392, 797, 400, ..., 808, 714, 808, 392]) # (238, 2)
mask = polygon2mask(
imgsz, # tuple
[polygon], # input as list
color=255, # 8-bit binary
downsample_ratio=1,
)
Caselle di delimitazione
Istanze Bounding Box (orizzontale)
Per gestire i dati dei riquadri di delimitazione, l'opzione Bboxes
La classe ti aiuterà a convertire la formattazione delle coordinate della scatola, a scalare le dimensioni della scatola, a calcolare le aree, a includere gli offset e molto altro ancora!
import numpy as np
from ultralytics.utils.instance import Bboxes
boxes = Bboxes(
bboxes=np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
),
format="xyxy",
)
boxes.areas()
# >>> array([ 4.1104e+05, 99216, 68000, 55772, 20347, 2288.5])
boxes.convert("xywh")
print(boxes.bboxes)
# >>> array(
# [[ 413.93, 494.05, 782.1, 525.56],
# [ 146.95, 650.63, 196.8, 504.15],
# [ 739.6, 634.62, 140.25, 484.85],
# [ 283.25, 631.67, 123.46, 451.74],
# [ 31.505, 711.99, 63.01, 322.91],
# [ 16.31, 289.67, 32.503, 70.41]]
# )
Vedi il Bboxes
sezione di riferimento per ulteriori attributi e metodi disponibili.
Suggerimento
Molte delle seguenti funzioni (e altre ancora) sono accessibili utilizzando il comando Bboxes
classe ma se preferisci lavorare direttamente con le funzioni, consulta le prossime sottosezioni su come importarle in modo indipendente.
Scatole in scala
Quando si scala un'immagine verso l'alto o verso il basso, le coordinate del riquadro di delimitazione corrispondenti possono essere scalate in modo appropriato per corrispondere usando ultralytics.utils.ops.scale_boxes
.
import cv2 as cv
import numpy as np
from ultralytics.utils.ops import scale_boxes
image = cv.imread("ultralytics/assets/bus.jpg")
h, w, c = image.shape
resized = cv.resize(image, None, (), fx=1.2, fy=1.2)
new_h, new_w, _ = resized.shape
xyxy_boxes = np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
)
new_boxes = scale_boxes(
img1_shape=(h, w), # original image dimensions
boxes=xyxy_boxes, # boxes from original image
img0_shape=(new_h, new_w), # resized image dimensions (scale to)
ratio_pad=None,
padding=False,
xywh=False,
)
print(new_boxes) # (1)!
# >>> array(
# [[ 27.454, 277.52, 965.98, 908.2],
# [ 58.262, 478.27, 294.42, 1083.3],
# [ 803.36, 470.63, 971.66, 1052.4],
# [ 265.82, 486.96, 413.98, 1029],
# [ 0, 660.64, 75.612, 1048.1],
# [ 0.0701, 305.35, 39.073, 389.84]]
# )
- Caselle di delimitazione scalate per le nuove dimensioni dell'immagine
Conversioni del formato del rettangolo di selezione
XYXY → XYWH
Converte le coordinate del rettangolo di selezione dal formato (x1, y1, x2, y2) al formato (x, y, larghezza, altezza) dove (x1, y1) è l'angolo in alto a sinistra e (x2, y2) è l'angolo in basso a destra.
import numpy as np
from ultralytics.utils.ops import xyxy2xywh
xyxy_boxes = np.array(
[
[22.878, 231.27, 804.98, 756.83],
[48.552, 398.56, 245.35, 902.71],
[669.47, 392.19, 809.72, 877.04],
[221.52, 405.8, 344.98, 857.54],
[0, 550.53, 63.01, 873.44],
[0.0584, 254.46, 32.561, 324.87],
]
)
xywh = xyxy2xywh(xyxy_boxes)
print(xywh)
# >>> array(
# [[ 413.93, 494.05, 782.1, 525.56],
# [ 146.95, 650.63, 196.8, 504.15],
# [ 739.6, 634.62, 140.25, 484.85],
# [ 283.25, 631.67, 123.46, 451.74],
# [ 31.505, 711.99, 63.01, 322.91],
# [ 16.31, 289.67, 32.503, 70.41]]
# )
Tutte le conversioni di Bounding Box
from ultralytics.utils.ops import (
ltwh2xywh,
ltwh2xyxy,
xywh2ltwh, # xywh → top-left corner, w, h
xywh2xyxy,
xywhn2xyxy, # normalized → pixel
xyxy2ltwh, # xyxy → top-left corner, w, h
xyxy2xywhn, # pixel → normalized
)
for func in (ltwh2xywh, ltwh2xyxy, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xyxy2ltwh, xyxy2xywhn):
print(help(func)) # print function docstrings
Consulta la docstringa di ogni funzione o visita la pagina ultralytics.utils.ops
pagina di riferimento per saperne di più su ciascuna funzione.
Tracciatura
Disegno di annotazioni
Ultralytics include una classe Annotator che può essere utilizzata per annotare qualsiasi tipo di dati. È più facile utilizzarla con i rettangoli di selezione degli oggetti, i punti chiave della posa e i rettangoli di selezione orientati.
Caselle di delimitazione orizzontali
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
names = { # (1)!
0: "person",
5: "bus",
11: "stop sign",
}
image = cv.imread("ultralytics/assets/bus.jpg")
ann = Annotator(
image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
xyxy_boxes = np.array(
[
[5, 22.878, 231.27, 804.98, 756.83], # class-idx x1 y1 x2 y2
[0, 48.552, 398.56, 245.35, 902.71],
[0, 669.47, 392.19, 809.72, 877.04],
[0, 221.52, 405.8, 344.98, 857.54],
[0, 0, 550.53, 63.01, 873.44],
[11, 0.0584, 254.46, 32.561, 324.87],
]
)
for nb, box in enumerate(xyxy_boxes):
c_idx, *box = box
label = f"{str(nb).zfill(2)}:{names.get(int(c_idx))}"
ann.box_label(box, label, color=colors(c_idx, bgr=True))
image_with_bboxes = ann.result()
- I nomi possono essere utilizzati da
model.names
quando lavorare con i risultati del rilevamento
Caselle di delimitazione orientate (OBB)
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
obb_names = {10: "small vehicle"}
obb_image = cv.imread("datasets/dota8/images/train/P1142__1024__0___824.jpg")
obb_boxes = np.array(
[
[0, 635, 560, 919, 719, 1087, 420, 803, 261], # class-idx x1 y1 x2 y2 x3 y2 x4 y4
[0, 331, 19, 493, 260, 776, 70, 613, -171],
[9, 869, 161, 886, 147, 851, 101, 833, 115],
]
)
ann = Annotator(
obb_image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
for obb in obb_boxes:
c_idx, *obb = obb
obb = np.array(obb).reshape(-1, 4, 2).squeeze()
label = f"{obb_names.get(int(c_idx))}"
ann.box_label(
obb,
label,
color=colors(c_idx, True),
rotated=True,
)
image_with_obb = ann.result()
Caselle di delimitazione Annotazione cerchio(etichetta cerchio)
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
writer = cv2.VideoWriter("Ultralytics circle annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
while True:
ret, im0 = cap.read()
if not ret:
break
annotator = Annotator(im0, line_width=2)
results = model.predict(im0)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
annotator.circle_label(box, label=model.names[int(cls)], color=colors(int(cls), True))
writer.write(im0)
cv2.imshow("Ultralytics circle annotation", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
writer.release()
cap.release()
cv2.destroyAllWindows()
Annotazione di testo dei riquadri di delimitazione(etichetta di testo)
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
writer = cv2.VideoWriter("Ultralytics text annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
while True:
ret, im0 = cap.read()
if not ret:
break
annotator = Annotator(im0, line_width=2)
results = model.predict(im0)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
annotator.text_label(box, label=model.names[int(cls)], color=colors(int(cls), True))
writer.write(im0)
cv2.imshow("Ultralytics text annotation", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
writer.release()
cap.release()
cv2.destroyAllWindows()
Vedi il Annotator
Pagina di riferimento per ulteriori approfondimenti.
Varie
Profilazione del codice
Controlla la durata dell'esecuzione/elaborazione del codice utilizzando with
o come decoratore.
from ultralytics.utils.ops import Profile
with Profile(device="cuda:0") as dt:
pass # operation to measure
print(dt)
# >>> "Elapsed time is 9.5367431640625e-07 s"
Ultralytics Formati supportati
Vuoi o devi utilizzare i formati delle immagini o dei video supportati da Ultralytics in modo programmatico? Usa queste costanti se ne hai bisogno.
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
print(IMG_FORMATS)
# {'tiff', 'pfm', 'bmp', 'mpo', 'dng', 'jpeg', 'png', 'webp', 'tif', 'jpg'}
print(VID_FORMATS)
# {'avi', 'mpg', 'wmv', 'mpeg', 'm4v', 'mov', 'mp4', 'asf', 'mkv', 'ts', 'gif', 'webm'}
Rendi divisibile
Calcola il numero intero più vicino a x
per essere uniformemente divisibile quando viene diviso per y
.
from ultralytics.utils.ops import make_divisible
make_divisible(7, 3)
# >>> 9
make_divisible(7, 2)
# >>> 8
DOMANDE FREQUENTI
Quali utility sono incluse nel pacchetto Ultralytics per migliorare i flussi di lavoro di apprendimento automatico?
Il pacchetto Ultralytics include una serie di utility progettate per semplificare e ottimizzare i flussi di lavoro di apprendimento automatico. Le utility principali includono l'auto-annotazione per l'etichettatura dei set di dati, la conversione del formato COCO in YOLO con convert_coco, la compressione delle immagini e la suddivisione automatica dei set di dati. Questi strumenti mirano a ridurre il lavoro manuale, a garantire la coerenza e a migliorare l'efficienza dell'elaborazione dei dati.
Come posso utilizzare Ultralytics per etichettare automaticamente il mio set di dati?
Se disponi di un modello di rilevamento degli oggetti pre-addestrato Ultralytics YOLO , puoi utilizzarlo con il modello SAM per auto-analizzare il tuo set di dati in formato di segmentazione. Ecco un esempio:
from ultralytics.data.annotator import auto_annotate
auto_annotate(
data="path/to/new/data",
det_model="yolov8n.pt",
sam_model="mobile_sam.pt",
device="cuda",
output_dir="path/to/save_labels",
)
Per maggiori dettagli, consulta la sezione di riferimento di auto_annotate.
Come posso convertire le annotazioni dei dataset COCO nel formato YOLO in Ultralytics?
Per convertire le annotazioni COCO JSON nel formato YOLO per il rilevamento degli oggetti, puoi utilizzare il metodo convert_coco
utilità. Ecco un esempio di codice:
from ultralytics.data.converter import convert_coco
convert_coco(
"../datasets/coco/annotations/",
use_segments=False,
use_keypoints=False,
cls91to80=True,
)
Per ulteriori informazioni, visita la pagina di riferimento di convert_coco.
Qual è lo scopo di YOLO Data Explorer nel pacchetto Ultralytics ?
Il YOLO Esploratore è un potente strumento introdotto nella 8.1.0
per migliorare la comprensione del dataset. Ti permette di utilizzare query di testo per trovare istanze di oggetti nel tuo set di dati, rendendo più facile l'analisi e la gestione dei tuoi dati. Questo strumento fornisce preziose informazioni sulla composizione e sulla distribuzione del set di dati, aiutando a migliorare la formazione e le prestazioni dei modelli.
Come posso convertire i rettangoli di selezione in segmenti in Ultralytics?
Per convertire i dati dei rettangoli di selezione esistenti (in x y w h
) ai segmenti, puoi utilizzare il metodo yolo_bbox2segment
funzione. Assicurati che i tuoi file siano organizzati con directory separate per le immagini e le etichette.
from ultralytics.data.converter import yolo_bbox2segment
yolo_bbox2segment(
im_dir="path/to/images",
save_dir=None, # saved to "labels-segment" in the images directory
sam_model="sam_b.pt",
)
Per maggiori informazioni, visita la pagina di riferimentoyolo_bbox2segment.