YOLOv9ïŒé£èºçã«é²æ©ããç©äœæ€åºæè¡
YOLOv9ã¯ãProgrammable Gradient Information (PGI)ãGeneralized Efficient Layer Aggregation Network (GELAN)ãšãã£ãç»æçãªæè¡ãå°å ¥ãããªã¢ã«ã¿ã€ã ã®ç©äœæ€åºã«å€§ããªé²æ©ããããããŸããããã®ã¢ãã«ã¯ãMS COCOããŒã¿ã»ããã§æ°ããªãã³ãããŒã¯ãèšå®ããå¹çæ§ã粟床ãé©å¿æ§ã«ãããŠé¡èãªæ¹åã瀺ããŠããŸããYOLOv9ãããžã§ã¯ãã¯ãç¬ç«ãããªãŒãã³ãœãŒã¹ã»ããŒã ã«ãã£ãŠéçºãããŠããŸããã次ã®ãããªå ç¢ãªã³ãŒãããŒã¹ã«åºã¥ããŠããŸãã UltralyticsYOLOv5ã«ãã£ãŠæäŸãããå ç¢ãªã³ãŒãããŒã¹ã«åºã¥ããŠãããAIç 究ã³ãã¥ããã£ã®å調粟ç¥ã瀺ããŠããã
èŠããã ïŒ Ultralytics ïœå·¥æ¥çšããã±ãŒãžããŒã¿ã»ãããçšããã«ã¹ã¿ã ããŒã¿ã§ã®YOLOv9ãã¬ãŒãã³ã°
YOLOv9ã®çŽ¹ä»
æé©ãªãªã¢ã«ã¿ã€ã ã®ç©äœæ€åºãè¿œæ±ããäžã§ãYOLOv9ã¯ããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã«ç¹æã®æ å ±æ倱ã®èª²é¡ãå æããé©æ°çãªã¢ãããŒãã§éç«ã£ãŠããŸããPGIãšæ±çšæ§ã®é«ãGELANã¢ãŒããã¯ãã£ãçµ±åããããšã§ãYOLOv9ã¯ã¢ãã«ã®åŠç¿èœåãé«ããã ãã§ãªããæ€åºããã»ã¹å šäœãéããŠéèŠãªæ å ±ã確å®ã«ä¿æããåè¶ãã粟床ãšããã©ãŒãã³ã¹ãå®çŸããŸãã
YOLOv9ã®ã³ã¢ã»ã€ãããŒã·ã§ã³
YOLOv9ã®é²æ©ã¯ããã£ãŒãã»ãã¥ãŒã©ã«ã»ãããã¯ãŒã¯ã«ãããæ å ±æ倱ããããã課é¡ã«å¯ŸåŠããããšã«æ·±ãæ ¹ãããŠãããæ å ±ããã«ããã¯ã®åçãšé©æ°çãªå¯éé¢æ°ã®äœ¿çšãèšèšã®äžå¿ãšãªã£ãŠãããYOLOv9ãé«ãå¹çãšç²ŸåºŠãç¶æããããšãä¿èšŒããŠããã
æ å ±ã®ããã«ããã¯ã®åç
æ å ±ããã«ããã¯ã®åçã¯ããã£ãŒãã©ãŒãã³ã°ã«ãããåºæ¬çãªèª²é¡ãæããã«ãããããŒã¿ããããã¯ãŒã¯ã®é£ç¶ããã¬ã€ã€ãŒãééããã«ã€ããŠãæ å ±æ倱ã®å¯èœæ§ãå¢å€§ããããã®çŸè±¡ã¯æ°åŠçã«ã¯æ¬¡ã®ããã«è¡šãããïŒ
ã©ã I
ã¯çžäºæ
å ±ãè¡šã f
ãã㊠g
ãã©ã¡ãŒã¿ãæã€å€æé¢æ°ãè¡šã theta
ãã㊠phi
ããããYOLOv9ã¯ãããã°ã©ããã«åŸé
æ
å ±ïŒPGIïŒãå®è£
ããããšã§ããã®èª²é¡ã«å¯ŸåŠããŠãããPGIã¯ããããã¯ãŒã¯ã®æ·±ãå
šäœã«ããã£ãŠéèŠãªããŒã¿ãä¿æããã®ã«åœ¹ç«ã¡ãããä¿¡é Œæ§ã®é«ãåŸé
çæãä¿èšŒãããã®çµæãã¢ãã«ã®åæãšããã©ãŒãã³ã¹ãåäžããã
å¯éé¢æ°
å¯éé¢æ°ã®ã³ã³ã»ããã¯ãYOLOv9ã®èšèšã®ããäžã€ã®èŠã§ãããé¢æ°ãå¯éçã§ãããšã¿ãªãããã®ã¯ãæ å ±ã倱ãããšãªãå転ã§ããå Žåã§ããïŒ
ãš psi
ãã㊠zeta
ããããããå¯éé¢æ°ãšãã®éé¢æ°ã®ãã©ã¡ãŒã¿ãšããããã®ç¹æ§ã¯ãã£ãŒãã©ãŒãã³ã°ã¢ãŒããã¯ãã£ã«ãšã£ãŠéåžžã«éèŠã§ããããããã¯ãŒã¯ãå®å
šãªæ
å ±ã®æµããä¿æããããšã§ãã¢ãã«ã®ãã©ã¡ãŒã¿ãããæ£ç¢ºã«æŽæ°ããããšãå¯èœã«ãªããYOLOv9ã¯ãç¹ã«æ·±ãå±€ã«ãããæ
å ±å£åã®ãªã¹ã¯ã軜æžããããã«ãå¯éé¢æ°ãã¢ãŒããã¯ãã£ã«çµã¿èŸŒãã§ãããç©äœæ€åºã¿ã¹ã¯ã«ãšã£ãŠéèŠãªããŒã¿ã®ä¿åãä¿èšŒããŠããã
軜éã¢ãã«ãžã®åœ±é¿
æ å ±æ倱ãžã®å¯ŸåŠã¯ããã©ã¡ãŒã¿åãäžååã§ãã£ãŒããã©ã¯ãŒãåŠçäžã«éèŠãªæ å ±ã倱ããã¡ãªè»œéã¢ãã«ã«ãšã£ãŠç¹ã«éèŠã§ããYOLOv9ã®ã¢ãŒããã¯ãã£ãŒã¯ãPGIãšå¯éé¢æ°ã®äœ¿çšã«ãããç°¡çŽ åãããã¢ãã«ã§ãã£ãŠããæ£ç¢ºãªç©äœæ€åºã«å¿ èŠãªå¿ é æ å ±ãä¿æãããå¹æçã«å©çšãããããšãä¿èšŒããŸãã
ããã°ã©ããã«ã»ã°ã©ãã£ãšã³ãã»ã€ã³ãã©ã¡ãŒã·ã§ã³ïŒPGIïŒ
PGIã¯ãæ å ±ã®ããã«ããã¯åé¡ã«å¯ŸåŠããããã«YOLOv9ã«å°å ¥ãããæ°ããæŠå¿µã§ãããæ·±ããããã¯ãŒã¯å±€ã«ããã£ãŠå¿ èŠäžå¯æ¬ ãªããŒã¿ã®ä¿åãä¿èšŒãããããã«ãããä¿¡é Œæ§ã®é«ãåŸé ã®çæãå¯èœã«ãªããæ£ç¢ºãªã¢ãã«ã®æŽæ°ã容æã«ãªããå šäœçãªæ€åºæ§èœãåäžããã
äžè¬åå¹çã¬ã€ã€éçŽãããã¯ãŒã¯ïŒGELANïŒ
GELANã¯ãYOLOv9ãåªãããã©ã¡ãŒã¿å©çšçãšèšç®å¹çãéæããããšãå¯èœã«ãããæŠç¥çãªã¢ãŒããã¯ãã£ã®é²æ©ãè¡šããŠããŸãããã®èšèšã«ãããããŸããŸãªèšç®ãããã¯ãæè»ã«çµ±åã§ãããããYOLOv9ã¯é床ã粟床ãç ç²ã«ããããšãªããå¹ åºãã¢ããªã±ãŒã·ã§ã³ã«é©å¿ã§ããã
YOLOv9ãã³ãããŒã¯
ã䜿çšããYOLOv9ã®ãã³ãããŒã¯ã§ã¯ãåŠç¿ãããã¢ãã«ã®æ§èœãå®éã®ã·ããªãªã§è©äŸ¡ããŸãã Ultralyticsã䜿çšãããã³ãããŒã¯ã§ã¯ãåŠç¿ã»æ€èšŒããã¢ãã«ã®ããã©ãŒãã³ã¹ãå®äžçã®ã·ããªãªã§è©äŸ¡ããŸãããã®ããã»ã¹ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ããã©ãŒãã³ã¹è©äŸ¡ïŒã¢ãã«ã®ã¹ããŒããšç²ŸåºŠãè©äŸ¡ããã
- ãšã¯ã¹ããŒã圢åŒïŒããŸããŸãªãšã¯ã¹ããŒããã©ãŒãããã§ã¢ãã«ããã¹ãããå¿ èŠãªæšæºãæºãããããŸããŸãªç°å¢ã§ããŸãæ©èœããããšã確èªããã
- ãã¬ãŒã ã¯ãŒã¯ã®ãµããŒãïŒ Ultralytics YOLOv8 å ã«å æ¬çãªãã¬ãŒã ã¯ãŒã¯ãæäŸãããããã®è©äŸ¡ã容æã«ããäžè²«ããä¿¡é Œã§ããçµæãä¿èšŒããã
ãã³ãããŒã¯ãè¡ãããšã§ãã¢ãã«ã管çããããã¹ãç°å¢ã§åªããæ§èœãçºæ®ããã ãã§ãªããå®çšçãªå®äžçã®ã¢ããªã±ãŒã·ã§ã³ã§ãé«ãæ§èœãç¶æã§ããããšã確èªã§ããŸãã
èŠããã ïŒ Ultralytics Python ããã±ãŒãžã䜿çšããYOLOv9ã¢ãã«ã®ãã³ãããŒã¯æ¹æ³
MS COCOããŒã¿ã»ããã§ã®æ§èœ
COCOããŒã¿ã»ããã«ãããYOLOv9ã®æ§èœã¯ããªã¢ã«ã¿ã€ã ç©äœæ€åºã«ãããYOLOv9ã®å€§ããªé²æ©ãäŸèšŒãããã®ã§ãããæ§ã ãªã¢ãã«ãµã€ãºã«ããã£ãŠæ°ããªãã³ãããŒã¯ãèšå®ãããè¡š1ã¯ãYOLOv9ã®åªããå¹çæ§ãšç²ŸåºŠã瀺ããæå 端ã®ãªã¢ã«ã¿ã€ã ç©äœæ€åºåšã®å æ¬çãªæ¯èŒã§ãã
è¡š1.ææ°ã®ãªã¢ã«ã¿ã€ã ç©äœæ€åºåšã®æ¯èŒ
ããã©ãŒãã³ã¹
ã¢ãã« | ãµã€ãº (ãã¯ã»ã«) |
mAPval 50-95 |
mAPval 50 |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|
YOLOv9t | 640 | 38.3 | 53.1 | 2.0 | 7.7 |
YOLOv9s | 640 | 46.8 | 63.4 | 7.2 | 26.7 |
YOLOv9m | 640 | 51.4 | 68.1 | 20.1 | 76.8 |
YOLOv9c | 640 | 53.0 | 70.2 | 25.5 | 102.8 |
YOLOv9e | 640 | 55.6 | 72.8 | 58.1 | 192.5 |
ã¢ãã« | ãµã€ãº (ãã¯ã»ã«) |
mAPbox 50-95 |
mAPmask 50-95 |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|
YOLOv9c-seg | 640 | 52.4 | 42.2 | 27.9 | 159.4 |
YOLOv9e-seg | 640 | 55.1 | 44.3 | 60.5 | 248.4 |
YOLOv9ã®ã€ãã¬ãŒã·ã§ã³ã¯ãå°ããªãã®ããå°ããªãã®ãŸã§å€å²ã«ãããã t
åºç¯ãª e
ã¢ãã«ã§ã¯ã粟床ïŒmAPã¡ããªã¯ã¹ïŒã ãã§ãªãããã©ã¡ãŒã¿æ°ãšèšç®éïŒFLOPsïŒã®åæžã«ããå¹çæ§ã®åäžãå®èšŒããŠããŸãããã®è¡šã¯ãYOLOv9ãã以åã®ããŒãžã§ã³ã競åã¢ãã«ãšæ¯èŒããŠãèšç®ãªãŒããŒããããç¶æãŸãã¯åæžããªãããé«ç²ŸåºŠãå®çŸããèœåãæããŠããããšã匷調ããŠããŸãã
ããã«æ¯ã¹ãYOLOv9ã¯ç®èŠãŸããæé·ãéããŠããïŒ
- 軜éã¢ãã«ïŒYOLOv9sã¯ããã©ã¡ãŒã¿å¹çãšèšç®è² è·ã§YOLO MS-SãäžåããAPã§ã¯0.4ã0.6%ã®æ¹åãéæããã
- äžèŠæš¡ãã倧èŠæš¡ã¢ãã«YOLOv9mãšYOLOv9eã¯ãã¢ãã«ã®è€éããšæ€åºæ§èœã®ãã¬ãŒããªãã®ãã©ã³ã¹ã«ãããŠé¡èãªé²æ©ã瀺ããŠããã粟床ã®åäžãèæ¯ã«ãã©ã¡ãŒã¿ãšèšç®ã®å€§å¹ ãªåæžãå®çŸããŠããã
ç¹ã«YOLOv9cã¢ãã«ã¯ãã¢ãŒããã¯ãã£ã®æé©åã®æå¹æ§ãæµ®ã圫ãã«ããŠããããã®ã¢ãã«ã¯ãYOLOv7 AFããã42%å°ãªããã©ã¡ãŒã¿ãš21%å°ãªãèšç®éã§åäœããªãããåçã®ç²ŸåºŠãéæããŠãããYOLOv9ã®å€§å¹ ãªå¹çåäžãå®èšŒããŠããŸããããã«ãYOLOv9eã¢ãã«ã¯ãYOLOv7AFããã15%å°ãªããã©ã¡ãŒã¿ãš25%å°ãªãèšç®éã§ã倧èŠæš¡ã¢ãã«ã®æ°ããåºæºãæã¡ç«ãŠãŸããã YOLOv8xããã«ãYOLOv9eã¢ãã«ã¯ãAPã®1.7%åäžãšãšãã«ããã©ã¡ãŒã¿ã15%åæžããèšç®éã25%åæžããããšã§ã倧èŠæš¡ã¢ãã«ã®æ°ããåºæºãæã¡ç«ãŠãã
ãããã®çµæã¯ãYOLOv9ã®ã¢ãã«èšèšã«ãããæŠç¥çãªé²æ©ã瀺ããã®ã§ããããªã¢ã«ã¿ã€ã ã®ç©äœæ€åºã¿ã¹ã¯ã«äžå¯æ¬ ãªç²ŸåºŠãæãªãããšãªãå¹çæ§ãé«ããããšã匷調ããŠããŸãããã®ã¢ãã«ã¯ãæ§èœææšã®éçãæŒãåºããã ãã§ãªããèšç®å¹çã®éèŠæ§ã匷調ããŠãããã³ã³ãã¥ãŒã¿ããžã§ã³ã®åéã«ããã極ããŠéèŠãªéçºãšãªã£ãŠããŸãã
çµè«
YOLOv9ã¯ããªã¢ã«ã¿ã€ã ç©äœæ€åºã«ããã極ããŠéèŠãªçºå±ã§ãããå¹çæ§ã粟床ãé©å¿æ§ã®é¢ã§å€§å¹ ãªæ¹åããããããŸããPGIãGELANã®ãããªé©æ°çãªãœãªã¥ãŒã·ã§ã³ãéããŠéèŠãªèª²é¡ã«åãçµãããšã§ãYOLOv9ã¯ãã®åéã«ãããå°æ¥ã®ç 究ãšå¿çšã«æ°ããªå äŸãæã¡ç«ãŠããAIã³ãã¥ããã£ãé²åãç¶ããäžãYOLOv9ã¯ãæè¡ã®é²æ©ãä¿é²ããã³ã©ãã¬ãŒã·ã§ã³ãšã€ãããŒã·ã§ã³ã®åã蚌æãããã®ã§ããã
䜿çšäŸ
ãã®äŸã§ã¯ãç°¡åãªYOLOv9ã®ãã¬ãŒãã³ã°ãšæšè«ã®äŸãæäŸããŸãããããã®ã¢ãŒããä»ã®ã¢ãŒãã«é¢ããå®å šãªããã¥ã¡ã³ãã¯ãPredict,Train,ValandExportdocs ããŒãžãåç §ããŠãã ããã
äŸ
PyTorch ãã
ããããã *.pt
ã¢ãã«ããã³æ§æ *.yaml
ãã¡ã€ã«ã«æž¡ãããšãã§ããã YOLO()
ã¯ã©ã¹ã䜿çšããŠãpython ã«ã¢ãã«ã®ã€ã³ã¹ã¿ã³ã¹ãäœæããŸãïŒ
from ultralytics import YOLO
# Build a YOLOv9c model from scratch
model = YOLO("yolov9c.yaml")
# Build a YOLOv9c model from pretrained weight
model = YOLO("yolov9c.pt")
# Display model information (optional)
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the YOLOv9c model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
CLI ã³ãã³ãã§ã¢ãã«ãçŽæ¥å®è¡ã§ããïŒ
ãµããŒããããã¿ã¹ã¯ãšã¢ãŒã
YOLOv9ã·ãªãŒãºã«ã¯ãé«æ§èœãªç©äœæ€åºçšã«æé©åãããæ§ã ãªã¢ãã«ããããŸãããããã®ã¢ãã«ã¯ãããŸããŸãªèšç®ããŒãºã粟床èŠä»¶ã«å¯Ÿå¿ããå¹ åºãã¢ããªã±ãŒã·ã§ã³ã«å¯Ÿå¿ããŸãã
ã¢ãã« | ãã¡ã€ã«å | ã¿ã¹ã¯ | æšè« | ããªããŒã·ã§ã³ | ãã¬ãŒãã³ã° | èŒžåº |
---|---|---|---|---|---|---|
YOLOv9 | yolov9t yolov9s yolov9m yolov9c.pt yolov9e.pt |
ç©äœæ€åº | â | â | â | â |
YOLOv9ã»ã° | yolov9c-seg.pt yolov9e-seg.pt |
ã€ã³ã¹ã¿ã³ã¹ã®ã»ã°ã¡ã³ããŒã·ã§ã³ | â | â | â | â |
ãã®è¡šã¯ãYOLOv9ã¢ãã«ããªã¢ã³ãã®è©³çŽ°ãªæŠèŠã瀺ããŠãããç©äœæ€åºã¿ã¹ã¯ã«ãããããããã®æ©èœãšãæšè«ãæ€èšŒããã¬ãŒãã³ã°ããšã¯ã¹ããŒããšãã£ãæ§ã ãªæäœã¢ãŒããšã®äºææ§ã匷調ããŠããŸãããã®å æ¬çãªãµããŒãã«ããããŠãŒã¶ãŒã¯å¹ åºãç©äœæ€åºã·ããªãªã§YOLOv9ã¢ãã«ã®èœåããã«ã«æŽ»çšããããšãã§ããŸãã
泚
YOLOv9ã¢ãã«ã®ãã¬ãŒãã³ã°ã«ã¯ãåãµã€ãºã®ã¢ãã«ïŒYOLOv8 ïŒãããå€ãã®ãªãœãŒã¹ãå¿ èŠãšãªããæéããããã
åŒçšãšè¬èŸ
ãªã¢ã«ã¿ã€ã ç©äœæ€åºåéã«ãããYOLOv9äœè ã®å€å€§ãªè²¢ç®ã«æè¬ãããïŒ
ãªãªãžãã«ã®YOLOv9è«æã¯arXivã«æ²èŒãããŠãããèè ãã¯åœŒãã®ç 究ãå ¬éããã³ãŒãããŒã¹ã¯GitHubã§ã¢ã¯ã»ã¹ã§ãããæã ã¯ããã®åéãçºå±ãããããåºãã³ãã¥ããã£ãŒã圌ãã®ç 究ã«ã¢ã¯ã»ã¹ã§ããããã«ãã圌ãã®åªåã«æè¬ããŠããã
ããããã質å
YOLOv9ã¯ããªã¢ã«ã¿ã€ã ã®ç©äœæ€åºã®ããã«ã©ã®ãããªã€ãããŒã·ã§ã³ãå°å ¥ããã®ã§ããïŒ
YOLOv9ã¯ãProgrammable Gradient InformationïŒPGIïŒãGeneralized Efficient Layer Aggregation NetworkïŒGELANïŒãšãã£ãç»æçãªæè¡ãå°å ¥ããŠããããããã®ã€ãããŒã·ã§ã³ã¯ããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã«ãããæ å ±æ倱ã®èª²é¡ã«å¯ŸåŠããé«ãå¹çæ§ã粟床ãé©å¿æ§ãä¿èšŒããŸããPGIã¯ãããã¯ãŒã¯ã®ã¬ã€ã€ãŒããŸããã§éèŠãªããŒã¿ãä¿æããGELANã¯ãã©ã¡ãŒã¿ãŒã®å©çšãšèšç®å¹çãæé©åããŸããMS COCOããŒã¿ã»ããã§æ°ããªãã³ãããŒã¯ãèšå®ããYOLOv9ã®ã³ã¢ã€ãããŒã·ã§ã³ã®è©³çŽ°ã«ã€ããŠã¯ããã¡ããã芧ãã ããã
MSã®COCOããŒã¿ã»ããã«ãããYOLOv9ã®ããã©ãŒãã³ã¹ã¯ãä»ã®ã¢ãã«ãšæ¯èŒããŠã©ããªã®ãïŒ
YOLOv9ã¯ãããé«ã粟床ãšå¹çãéæããããšã§ãæå 端ã®ãªã¢ã«ã¿ã€ã ç©äœæ€åºåšãåé§ãããCOCOããŒã¿ã»ããã«ãããŠãYOLOv9ã¢ãã«ã¯ãèšç®ãªãŒãããããç¶æãŸãã¯åæžããªãããæ§ã ãªãµã€ãºã«ãããŠåªããmAPã¹ã³ã¢ã瀺ããäŸãã°ãYOLOv9cã¯ãYOLOv7 AFããã42%å°ãªããã©ã¡ãŒã¿ãš21%å°ãªãèšç®éã§ãåçã®ç²ŸåºŠãéæããŠããŸãã詳现ãªææšã«ã€ããŠã¯ãæ§èœæ¯èŒãã芧ãã ããã
Python ãCLI ã䜿ã£ãŠYOLOv9ã¢ãã«ããã¬ãŒãã³ã°ããã«ã¯ïŒ
YOLOv9ã¢ãã«ã¯ãPython ãšCLI ã®äž¡æ¹ã®ã³ãã³ãã䜿ã£ãŠãã¬ãŒãã³ã°ããããšãã§ãããPython ãã¢ãã«ãã€ã³ã¹ã¿ã³ã¹åããã«ã¯ YOLO
ã¯ã©ã¹ãåŒã³åºã train
ã¡ãœããã䜿çšããïŒ
from ultralytics import YOLO
# Build a YOLOv9c model from pretrained weights and train
model = YOLO("yolov9c.pt")
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
CLI ããã¬ãŒãã³ã°ãå®æœããïŒ
ãã¬ãŒãã³ã°ãšæšè«ã®äœ¿çšäŸã«ã€ããŠã¯ãã¡ããã芧ãã ããã
Ultralytics YOLOv9ã軜éã¢ãã«ã«äœ¿ãå©ç¹ã¯äœã§ããïŒ
YOLOv9ã¯ãæ å ±æ倱ã軜æžããããã«èšèšãããŠããŸããããã¯ãéèŠãªæ å ±ã倱ãããã¡ãªè»œéã¢ãã«ã«ãšã£ãŠç¹ã«éèŠã§ããããã°ã©ããã«åŸé æ å ±ïŒPGIïŒãšå¯éé¢æ°ãçµ±åããããšã§ãYOLOv9ã¯æ¬è³ªçãªããŒã¿ä¿æãä¿èšŒããã¢ãã«ã®ç²ŸåºŠãšå¹çãé«ããŸãããã®ãããã³ã³ãã¯ãã§é«æ§èœãªã¢ãã«ãå¿ èŠãšããã¢ããªã±ãŒã·ã§ã³ã«éåžžã«é©ããŠããŸãã詳ããã¯ãYOLOv9ã軜éã¢ãã«ã«äžãã圱é¿ã®ã»ã¯ã·ã§ã³ãã芧ãã ããã
YOLOv9ã¯ã©ã®ãããªã¿ã¹ã¯ãã¢ãŒãããµããŒãããŠããŸããïŒ
YOLOv9ã¯ããªããžã§ã¯ãæ€åºãã€ã³ã¹ã¿ã³ã¹åå²ãå«ãæ§ã ãªã¿ã¹ã¯ããµããŒããããæšè«ãæ€èšŒããã¬ãŒãã³ã°ããšã¯ã¹ããŒããªã©ãè€æ°ã®åäœã¢ãŒãã«å¯Ÿå¿ããŠããããã®æ±çšæ§ã«ãããYOLOv9ã¯å€æ§ãªãªã¢ã«ã¿ã€ã ã»ã³ã³ãã¥ãŒã¿ãŒã»ããžã§ã³ã»ã¢ããªã±ãŒã·ã§ã³ã«é©å¿ã§ããã詳现ã«ã€ããŠã¯ããµããŒããããã¿ã¹ã¯ãšã¢ãŒãã®ã»ã¯ã·ã§ã³ãåç §ããŠãã ããã