コンテンツへスキップ

参考 ultralytics/data/converter.py

備考

このファイルはhttps://github.com/ultralytics/ultralytics/blob/main/ ultralytics/data/converter .py にあります。もし問題を発見したら、Pull Request🛠️ を投稿して修正にご協力ください。ありがとうございました!



ultralytics.data.converter.coco91_to_coco80_class()

91 インデックスの COCO クラス ID を 80 インデックスの COCO クラス ID に変換する。

リターンズ

タイプ 説明
list

91個のクラスIDのリスト。インデックスが80個のクラスIDを表し、値が対応する91個のクラスIDを表す。 91個のクラスIDのリスト。

ソースコード ultralytics/data/converter.py
def coco91_to_coco80_class():
    """
    Converts 91-index COCO class IDs to 80-index COCO class IDs.

    Returns:
        (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
            corresponding 91-index class ID.
    """
    return [
        0,
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        None,
        11,
        12,
        13,
        14,
        15,
        16,
        17,
        18,
        19,
        20,
        21,
        22,
        23,
        None,
        24,
        25,
        None,
        None,
        26,
        27,
        28,
        29,
        30,
        31,
        32,
        33,
        34,
        35,
        36,
        37,
        38,
        39,
        None,
        40,
        41,
        42,
        43,
        44,
        45,
        46,
        47,
        48,
        49,
        50,
        51,
        52,
        53,
        54,
        55,
        56,
        57,
        58,
        59,
        None,
        60,
        None,
        None,
        61,
        None,
        62,
        63,
        64,
        65,
        66,
        67,
        68,
        69,
        70,
        71,
        72,
        None,
        73,
        74,
        75,
        76,
        77,
        78,
        79,
        None,
    ]



ultralytics.data.converter.coco80_to_coco91_class()

Converts 80-index (val2014) to 91-index (paper).
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.

Example:
    ```python
    import numpy as np

    a = np.loadtxt('data/coco.names', dtype='str', delimiter='

') b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='. ') x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]. # ダークネットからココへ x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # ココからダークネットへ # ココからダークネットへ ```

ソースコード ultralytics/data/converter.py
def coco80_to_coco91_class():
    """
    Converts 80-index (val2014) to 91-index (paper).
    For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.

    Example:
        ```python
        import numpy as np

        a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
        b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
        x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
        x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
        ```
    """
    return [
        1,
        2,
        3,
        4,
        5,
        6,
        7,
        8,
        9,
        10,
        11,
        13,
        14,
        15,
        16,
        17,
        18,
        19,
        20,
        21,
        22,
        23,
        24,
        25,
        27,
        28,
        31,
        32,
        33,
        34,
        35,
        36,
        37,
        38,
        39,
        40,
        41,
        42,
        43,
        44,
        46,
        47,
        48,
        49,
        50,
        51,
        52,
        53,
        54,
        55,
        56,
        57,
        58,
        59,
        60,
        61,
        62,
        63,
        64,
        65,
        67,
        70,
        72,
        73,
        74,
        75,
        76,
        77,
        78,
        79,
        80,
        81,
        82,
        84,
        85,
        86,
        87,
        88,
        89,
        90,
    ]



ultralytics.data.converter.convert_coco(labels_dir='../coco/annotations/', save_dir='coco_converted/', use_segments=False, use_keypoints=False, cls91to80=True)

COCO データセットのアノテーションを、YOLO モデルの学習に適したYOLO アノテーション形式に変換する。

パラメーター

名称 タイプ 説明 デフォルト
labels_dir str

COCOデータセットのアノテーションファイルが格納されているディレクトリへのパス。

'../coco/annotations/'
save_dir str

結果を保存するディレクトリへのパス。

'coco_converted/'
use_segments bool

セグメンテーション・マスクを出力に含めるかどうか。

False
use_keypoints bool

キーポイント注釈を出力に含めるかどうか。

False
cls91to80 bool

91のCOCOクラスIDを対応する80のCOCOクラスIDにマッピングするかどうか。

True
例
from ultralytics.data.converter import convert_coco

convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True)
出力

指定された出力ディレクトリに出力ファイルを生成する。

ソースコード ultralytics/data/converter.py
def convert_coco(
    labels_dir="../coco/annotations/",
    save_dir="coco_converted/",
    use_segments=False,
    use_keypoints=False,
    cls91to80=True,
):
    """
    Converts COCO dataset annotations to a YOLO annotation format  suitable for training YOLO models.

    Args:
        labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
        save_dir (str, optional): Path to directory to save results to.
        use_segments (bool, optional): Whether to include segmentation masks in the output.
        use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
        cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.

    Example:
        ```python
        from ultralytics.data.converter import convert_coco

        convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True)
        ```

    Output:
        Generates output files in the specified output directory.
    """

    # Create dataset directory
    save_dir = increment_path(save_dir)  # increment if save directory already exists
    for p in save_dir / "labels", save_dir / "images":
        p.mkdir(parents=True, exist_ok=True)  # make dir

    # Convert classes
    coco80 = coco91_to_coco80_class()

    # Import json
    for json_file in sorted(Path(labels_dir).resolve().glob("*.json")):
        fn = Path(save_dir) / "labels" / json_file.stem.replace("instances_", "")  # folder name
        fn.mkdir(parents=True, exist_ok=True)
        with open(json_file) as f:
            data = json.load(f)

        # Create image dict
        images = {f'{x["id"]:d}': x for x in data["images"]}
        # Create image-annotations dict
        imgToAnns = defaultdict(list)
        for ann in data["annotations"]:
            imgToAnns[ann["image_id"]].append(ann)

        # Write labels file
        for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"):
            img = images[f"{img_id:d}"]
            h, w, f = img["height"], img["width"], img["file_name"]

            bboxes = []
            segments = []
            keypoints = []
            for ann in anns:
                if ann["iscrowd"]:
                    continue
                # The COCO box format is [top left x, top left y, width, height]
                box = np.array(ann["bbox"], dtype=np.float64)
                box[:2] += box[2:] / 2  # xy top-left corner to center
                box[[0, 2]] /= w  # normalize x
                box[[1, 3]] /= h  # normalize y
                if box[2] <= 0 or box[3] <= 0:  # if w <= 0 and h <= 0
                    continue

                cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1  # class
                box = [cls] + box.tolist()
                if box not in bboxes:
                    bboxes.append(box)
                    if use_segments and ann.get("segmentation") is not None:
                        if len(ann["segmentation"]) == 0:
                            segments.append([])
                            continue
                        elif len(ann["segmentation"]) > 1:
                            s = merge_multi_segment(ann["segmentation"])
                            s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
                        else:
                            s = [j for i in ann["segmentation"] for j in i]  # all segments concatenated
                            s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
                        s = [cls] + s
                        segments.append(s)
                    if use_keypoints and ann.get("keypoints") is not None:
                        keypoints.append(
                            box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
                        )

            # Write
            with open((fn / f).with_suffix(".txt"), "a") as file:
                for i in range(len(bboxes)):
                    if use_keypoints:
                        line = (*(keypoints[i]),)  # cls, box, keypoints
                    else:
                        line = (
                            *(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]),
                        )  # cls, box or segments
                    file.write(("%g " * len(line)).rstrip() % line + "\n")

    LOGGER.info(f"COCO data converted successfully.\nResults saved to {save_dir.resolve()}")



ultralytics.data.converter.convert_dota_to_yolo_obb(dota_root_path)

DOTA データセットのアノテーションをYOLO OBB (Oriented Bounding Box) フォーマットに変換します。

この関数は、DOTAデータセットの'train'フォルダと'val'フォルダにある画像を処理する。各画像に対して ラベルを読み込み,YOLO OBB フォーマットで新しいラベルを新しいディレクトリに書き込む.

パラメーター

名称 タイプ 説明 デフォルト
dota_root_path str

DOTAデータセットのルートディレクトリのパス。

必須
例
from ultralytics.data.converter import convert_dota_to_yolo_obb

convert_dota_to_yolo_obb('path/to/DOTA')
備考

DOTAデータセットで想定されるディレクトリ構造:

- DOTA
    ├─ images
    │   ├─ train
    │   └─ val
    └─ labels
        ├─ train_original
        └─ val_original

実行後、この関数はラベルを以下のように整理する:

- DOTA
    └─ labels
        ├─ train
        └─ val
ソースコード ultralytics/data/converter.py
def convert_dota_to_yolo_obb(dota_root_path: str):
    """
    Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.

    The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
    associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.

    Args:
        dota_root_path (str): The root directory path of the DOTA dataset.

    Example:
        ```python
        from ultralytics.data.converter import convert_dota_to_yolo_obb

        convert_dota_to_yolo_obb('path/to/DOTA')
        ```

    Notes:
        The directory structure assumed for the DOTA dataset:

            - DOTA
                ├─ images
                │   ├─ train
                │   └─ val
                └─ labels
                    ├─ train_original
                    └─ val_original

        After execution, the function will organize the labels into:

            - DOTA
                └─ labels
                    ├─ train
                    └─ val
    """
    dota_root_path = Path(dota_root_path)

    # Class names to indices mapping
    class_mapping = {
        "plane": 0,
        "ship": 1,
        "storage-tank": 2,
        "baseball-diamond": 3,
        "tennis-court": 4,
        "basketball-court": 5,
        "ground-track-field": 6,
        "harbor": 7,
        "bridge": 8,
        "large-vehicle": 9,
        "small-vehicle": 10,
        "helicopter": 11,
        "roundabout": 12,
        "soccer-ball-field": 13,
        "swimming-pool": 14,
        "container-crane": 15,
        "airport": 16,
        "helipad": 17,
    }

    def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
        """Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
        orig_label_path = orig_label_dir / f"{image_name}.txt"
        save_path = save_dir / f"{image_name}.txt"

        with orig_label_path.open("r") as f, save_path.open("w") as g:
            lines = f.readlines()
            for line in lines:
                parts = line.strip().split()
                if len(parts) < 9:
                    continue
                class_name = parts[8]
                class_idx = class_mapping[class_name]
                coords = [float(p) for p in parts[:8]]
                normalized_coords = [
                    coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)
                ]
                formatted_coords = ["{:.6g}".format(coord) for coord in normalized_coords]
                g.write(f"{class_idx} {' '.join(formatted_coords)}\n")

    for phase in ["train", "val"]:
        image_dir = dota_root_path / "images" / phase
        orig_label_dir = dota_root_path / "labels" / f"{phase}_original"
        save_dir = dota_root_path / "labels" / phase

        save_dir.mkdir(parents=True, exist_ok=True)

        image_paths = list(image_dir.iterdir())
        for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):
            if image_path.suffix != ".png":
                continue
            image_name_without_ext = image_path.stem
            img = cv2.imread(str(image_path))
            h, w = img.shape[:2]
            convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)



ultralytics.data.converter.min_index(arr1, arr2)

2次元点の2つの配列間の最短距離を持つインデックスの組を見つける。

パラメーター

名称 タイプ 説明 デフォルト
arr1 ndarray

N個の2次元点を表す (N, 2) のNumPy配列。

必須
arr2 ndarray

M個の2次元点を表す (M, 2) のNumPy配列。

必須

リターンズ

タイプ 説明
tuple

arr1とarr2それぞれの最短距離を持つ点のインデックスを含むタプル。

ソースコード ultralytics/data/converter.py
def min_index(arr1, arr2):
    """
    Find a pair of indexes with the shortest distance between two arrays of 2D points.

    Args:
        arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points.
        arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points.

    Returns:
        (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
    """
    dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
    return np.unravel_index(np.argmin(dis, axis=None), dis.shape)



ultralytics.data.converter.merge_multi_segment(segments)

各セグメント間の距離が最小となる座標を結んで、複数のセグメントを 1 つのリストにマージします。 この関数は、これらの座標を細い線で結び、すべてのセグメントを 1 つにまとめます。

パラメーター

名称 タイプ 説明 デフォルト
segments List[List]

COCOのJSONファイルにあるオリジナルのセグメンテーション。 各要素は、[segmentation1, segmentation2,...] のような座標のリストである。

必須

リターンズ

名称 タイプ 説明
s List[ndarray]

NumPy の配列として表現された、接続されたセグメントのリスト。

ソースコード ultralytics/data/converter.py
def merge_multi_segment(segments):
    """
    Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
    This function connects these coordinates with a thin line to merge all segments into one.

    Args:
        segments (List[List]): Original segmentations in COCO's JSON file.
                               Each element is a list of coordinates, like [segmentation1, segmentation2,...].

    Returns:
        s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
    """
    s = []
    segments = [np.array(i).reshape(-1, 2) for i in segments]
    idx_list = [[] for _ in range(len(segments))]

    # Record the indexes with min distance between each segment
    for i in range(1, len(segments)):
        idx1, idx2 = min_index(segments[i - 1], segments[i])
        idx_list[i - 1].append(idx1)
        idx_list[i].append(idx2)

    # Use two round to connect all the segments
    for k in range(2):
        # Forward connection
        if k == 0:
            for i, idx in enumerate(idx_list):
                # Middle segments have two indexes, reverse the index of middle segments
                if len(idx) == 2 and idx[0] > idx[1]:
                    idx = idx[::-1]
                    segments[i] = segments[i][::-1, :]

                segments[i] = np.roll(segments[i], -idx[0], axis=0)
                segments[i] = np.concatenate([segments[i], segments[i][:1]])
                # Deal with the first segment and the last one
                if i in [0, len(idx_list) - 1]:
                    s.append(segments[i])
                else:
                    idx = [0, idx[1] - idx[0]]
                    s.append(segments[i][idx[0] : idx[1] + 1])

        else:
            for i in range(len(idx_list) - 1, -1, -1):
                if i not in [0, len(idx_list) - 1]:
                    idx = idx_list[i]
                    nidx = abs(idx[1] - idx[0])
                    s.append(segments[i][nidx:])
    return s



ultralytics.data.converter.yolo_bbox2segment(im_dir, save_dir=None, sam_model='sam_b.pt')

既存のオブジェクト検出データセット(バウンディングボックス)をセグメンテーションデータセットまたはオリエンテッドバウンディングボックス(OBB)に変換します。 YOLO に変換します。必要に応じて、SAM オートアノテーターを使用してセグメンテーションデータを生成します。

パラメーター

名称 タイプ 説明 デフォルト
im_dir str | Path

変換する画像ディレクトリへのパス。

必須
save_dir str | Path

生成されたラベルを保存するパス。 に保存されます。 labels-segment の同じディレクトリレベルにある。 im_dir save_dir が None の場合。デフォルト:なし。

None
sam_model str

中間セグメンテーションデータに使用するセグメンテーションモデル。

'sam_b.pt'
備考

データセットに想定される入力ディレクトリ構造.

- im_dir
    ├─ 001.jpg
    ├─ ..
    └─ NNN.jpg
- labels
    ├─ 001.txt
    ├─ ..
    └─ NNN.txt
ソースコード ultralytics/data/converter.py
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
    """
    Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
    in YOLO format. Generates segmentation data using SAM auto-annotator as needed.

    Args:
        im_dir (str | Path): Path to image directory to convert.
        save_dir (str | Path): Path to save the generated labels, labels will be saved
            into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None.
        sam_model (str): Segmentation model to use for intermediate segmentation data; optional.

    Notes:
        The input directory structure assumed for dataset:

            - im_dir
                ├─ 001.jpg
                ├─ ..
                └─ NNN.jpg
            - labels
                ├─ 001.txt
                ├─ ..
                └─ NNN.txt
    """
    from ultralytics.data import YOLODataset
    from ultralytics.utils.ops import xywh2xyxy
    from ultralytics.utils import LOGGER
    from ultralytics import SAM
    from tqdm import tqdm

    # NOTE: add placeholder to pass class index check
    dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
    if len(dataset.labels[0]["segments"]) > 0:  # if it's segment data
        LOGGER.info("Segmentation labels detected, no need to generate new ones!")
        return

    LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
    sam_model = SAM(sam_model)
    for l in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
        h, w = l["shape"]
        boxes = l["bboxes"]
        if len(boxes) == 0:  # skip empty labels
            continue
        boxes[:, [0, 2]] *= w
        boxes[:, [1, 3]] *= h
        im = cv2.imread(l["im_file"])
        sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False)
        l["segments"] = sam_results[0].masks.xyn

    save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
    save_dir.mkdir(parents=True, exist_ok=True)
    for l in dataset.labels:
        texts = []
        lb_name = Path(l["im_file"]).with_suffix(".txt").name
        txt_file = save_dir / lb_name
        cls = l["cls"]
        for i, s in enumerate(l["segments"]):
            line = (int(cls[i]), *s.reshape(-1))
            texts.append(("%g " * len(line)).rstrip() % line)
        if texts:
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)
    LOGGER.info(f"Generated segment labels saved in {save_dir}")





作成日:2023-11-12 更新日:2024-01-23
作成者:glenn-jocher(4),Laughing-q(1)