æ§æ
YOLO èšå®ãšãã€ããŒãã©ã¡ãŒã¿ã¯ãã¢ãã«ã®ããã©ãŒãã³ã¹ãã¹ããŒãã粟床ã«éèŠãªåœ¹å²ãæãããŸãããããã®èšå®ãšãã€ããŒãã©ã¡ãŒã¿ã¯ããã¬ãŒãã³ã°ãæ€èšŒãäºæž¬ãªã©ãã¢ãã«éçºããã»ã¹ã®ããŸããŸãªæ®µéã§ã¢ãã«ã®åäœã«åœ±é¿ãäžããŸãã
èŠããã ïŒ MasteringUltralytics YOLO : ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³
Ultralytics ã³ãã³ãã¯ä»¥äžã®æ§æã䜿ãïŒ
äŸ
ã©ãã§ã ïŒ
TASK
(ãªãã·ã§ã³) 㯠(èŠã€ãã, ã»ã°ã¡ã³ã, åé¡ãã, ããŒãº, ãªãã)MODE
(å¿ é ) 㯠(é»è», å€, äºæž¬, 茞åº, ãã©ãã¯, ãã³ãããŒã¯)ARGS
(ãªãã·ã§ã³ïŒã¯arg=value
ã®ãããªãã¢ãimgsz=640
ããã©ã«ããäžæžãããã
ããã©ã«ã ARG
ãã®ããŒãžã§ã¯ cfg/defaults.yaml
ãã¡ã€ã«.
ã¿ã¹ã¯
YOLO ã¢ãã«ã¯ãæ€åºãã»ã°ã¡ã³ããŒã·ã§ã³ãåé¡ãããŒãºãªã©ãããŸããŸãªã¿ã¹ã¯ã«äœ¿çšã§ããããããã®ã¿ã¹ã¯ã¯ãçæãããåºåã®ã¿ã€ããã解決ããããã«èšèšãããç¹å®ã®åé¡ãç°ãªããŸãã
- æ€åºããïŒç»åããããªå ã®å¯Ÿè±¡ç©ãé¢å¿é åãç¹å®ããäœçœ®ãç¹å®ããã
- ã»ã°ã¡ã³ãïŒç»åããããªããç°ãªããªããžã§ã¯ããã¯ã©ã¹ã«å¯Ÿå¿ããé åããã¯ã»ã«ã«åå²ããããšã
- åé¡ããïŒå ¥åç»åã®ã¯ã©ã¹ã©ãã«ãäºæž¬ããã
- ããŒãºïŒç»åããããªå ã®ãªããžã§ã¯ããèå¥ãããã®ããŒãã€ã³ããæšå®ããã
- OBB: è¡æç»åãå»ççšç»åã«é©ããããªãªãšã³ãããïŒå転ããïŒããŠã³ãã£ã³ã°ããã¯ã¹ã
è°è« | ããã©ã«ã | 説æ |
---|---|---|
task |
'detect' |
å®è¡ããYOLO ã¿ã¹ã¯ãæå®ããããªãã·ã§ã³ã«ã¯ä»¥äžãå«ãŸããã detect ã«ãšã£ãŠ ãªããžã§ã¯ãæ€åº, segment ã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã«ã classify ãåé¡ããã pose ããŒãºæšå®ãš obb ãªãªãšã³ããããªããŠã³ãã£ã³ã°ããã¯ã¹åã¿ã¹ã¯ã¯ãç»åããããªè§£æã«ãããç¹å®ã®ã¿ã€ãã®åºåãåé¡ã«åãããŠèª¿æŽãããŠããŸãã |
ã¢ãŒã
YOLO ã¢ãã«ã¯ãããªãã解決ããããšããŠããç¹å®ã®åé¡ã«å¿ããŠç°ãªãã¢ãŒãã§äœ¿çšããããšãã§ããŸãããããã®ã¢ãŒãã«ã¯ä»¥äžãå«ãŸããïŒ
- èšç·ŽããïŒã«ã¹ã¿ã ããŒã¿ã»ããã§YOLO11 ã¢ãã«ããã¬ãŒãã³ã°ããã
- Val:YOLO11 ã¢ãã«ããã¬ãŒãã³ã°ãããåŸã®æ€èšŒçšã
- äºæž¬ããïŒæ°ããç»åãåç»ã«å¯ŸããŠãåŠç¿æžã¿ã®YOLO11 ã¢ãã«ã䜿ã£ãŠäºæž¬ãè¡ãã
- ãšã¯ã¹ããŒãïŒYOLO11 ã¢ãã«ãé 眮ã«äœ¿çšã§ãã圢åŒã«ãšã¯ã¹ããŒãããŸãã
- 远跡ïŒYOLO11 ã¢ãã«ã䜿ã£ãŠãªã¢ã«ã¿ã€ã ã§ç©äœã远跡ããã
- ãã³ãããŒã¯ïŒYOLO11 ïŒONNX ãTensorRT ãªã©ïŒã®ãšã¯ã¹ããŒãé床ãšç²ŸåºŠã®ãã³ãããŒã¯çšã
è°è« | ããã©ã«ã | 説æ |
---|---|---|
mode |
'train' |
YOLO ã¢ãã«ãåäœããã¢ãŒããæå®ããŸãããªãã·ã§ã³ã¯ä»¥äžã®éãã train ãã¢ãã«ãã¬ãŒãã³ã°ã«äœ¿çšããã val ãæ€èšŒããã predict æ°ããããŒã¿ã«å¯Ÿããæšè«ã®ããã«ã export ã¢ãã«ã®å±é圢åŒãžã®å€æ track ç©äœè¿œè·¡çš benchmark æ§èœè©äŸ¡çšåã¢ãŒãã¯ãéçºããé
åãŸã§ãã¢ãã«ã©ã€ããµã€ã¯ã«ã®ããŸããŸãªæ®µéã«å¯Ÿå¿ããããã«èšèšãããŠããã |
åè»èšå®
YOLO ã¢ãã«ã®åŠç¿èšå®ã¯ãåŠç¿ããã»ã¹ã§äœ¿çšãããæ§ã ãªãã€ããŒãã©ã¡ãŒã¿ãšèšå®ãå å«ããããããã®èšå®ã¯ã¢ãã«ã®ããã©ãŒãã³ã¹ãã¹ããŒãã粟床ã«åœ±é¿ãäžãããäž»èŠãªåŠç¿èšå®ã«ã¯ãããããµã€ãºãåŠç¿çãã¢ã¡ã³ã¿ã ããŠã§ã€ãæžè¡°ãå«ãŸãããããã«ããªããã£ãã€ã¶ãæ倱é¢æ°ãåŠç¿ããŒã¿ã»ããã®æ§æãªã©ã®éžæãåŠç¿ããã»ã¹ã«åœ±é¿ãäžããŸããããã©ãŒãã³ã¹ãæé©åããããã«ã¯ããããã®èšå®ãæ éã«ãã¥ãŒãã³ã°ããå®éšããããšãéèŠã§ãã
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
model |
str |
None |
ãã¬ãŒãã³ã°çšã®ã¢ãã«ãã¡ã€ã«ãæå®ããŸãããã¡ã€ã«ãžã®ãã¹ãæå®ããŸãã .pt èšç·Žæžã¿ã¢ãã«ãŸã㯠.yaml èšå®ãã¡ã€ã«ãã¢ãã«æ§é ã®å®çŸ©ãéã¿ã®åæåã«äžå¯æ¬ ã |
data |
str |
None |
ããŒã¿ã»ããèšå®ãã¡ã€ã«ãžã®ãã¹ïŒäŸïŒ coco8.yaml ).ãã®ãã¡ã€ã«ã«ã¯ããŒã¿ã»ããåºæã®ãã©ã¡ãŒã¿ãå«ãŸããã æ€èšŒããŒã¿ã¯ã©ã¹åãã¯ã©ã¹æ° |
epochs |
int |
100 |
åŠç¿ãšããã¯ã®ç·æ°ãåãšããã¯ã¯ããŒã¿ã»ããå šäœã«å¯Ÿãããã«ãã¹ãè¡šãããã®å€ã調æŽããããšã§ããã¬ãŒãã³ã°æéãšã¢ãã«ã®ããã©ãŒãã³ã¹ã«åœ±é¿ãäžããããšãã§ããã |
time |
float |
None |
æ倧ãã¬ãŒãã³ã°æéïŒæéåäœïŒãèšå®ãããš epochs åŒæ°ãæå®ããããšã§ãæå®ããæéåŸã«ãã¬ãŒãã³ã°ãèªåçã«åæ¢ããããšãã§ããŸããæéã«å¶çŽã®ãããã¬ãŒãã³ã°ã·ããªãªã«äŸ¿å©ã§ãã |
patience |
int |
100 |
åŠç¿ãæ©æã«åæ¢ããåã«ãæ€èšŒã¡ããªã¯ã¹ã«æ¹åãèŠãããªãå Žåã®ãšããã¯æ°ãæ§èœãé æã¡ã«ãªã£ããšãã«åŠç¿ãåæ¢ããããšã§ããªãŒããŒãã£ããã£ã³ã°ãé²ãããšãã§ããŸãã |
batch |
int |
16 |
ããããµã€ãº3ã€ã®ã¢ãŒããããã batch=16 )ãGPU ã¡ã¢ãªäœ¿çšç60%ã®èªåã¢ãŒã(batch=-1 )ããŸãã¯å©çšçãæå®ããèªåã¢ãŒã(batch=0.70 ). |
imgsz |
int ãŸã㯠list |
640 |
ãã¬ãŒãã³ã°ã®ã¿ãŒã²ããç»åãµã€ãºããã¹ãŠã®ç»åã¯ãã¢ãã«ã«å ¥åãããåã«ãã®æ¬¡å ã«ãªãµã€ãºãããŸããã¢ãã«ã®ç²ŸåºŠãšèšç®ã®è€éãã«åœ±é¿ããŸãã |
save |
bool |
True |
ãã¬ãŒãã³ã°ã®ãã§ãã¯ãã€ã³ããšæçµçãªã¢ãã«ã®éã¿ãä¿åã§ããããã«ããŸãããã¬ãŒãã³ã°ã®åéãã¢ãã«ã®ãããã€ã«äŸ¿å©ã§ãã |
save_period |
int |
-1 |
ã¢ãã«ã®ãã§ãã¯ãã€ã³ããä¿åããé »åºŠããšããã¯ã§æå®ããŸããå€ã-1ã«ãããšããã®æ©èœã¯ç¡å¹ã«ãªããŸããé·ããã¬ãŒãã³ã°ã»ãã·ã§ã³äžã«äžéã¢ãã«ãä¿åããã®ã«äŸ¿å©ã§ãã |
cache |
bool |
False |
ããŒã¿ã»ããç»åãã¡ã¢ãªäžã«ãã£ãã·ã¥ã§ããããã«ãã (True /ram )ããã£ã¹ã¯äž(disk )ããŸãã¯ç¡å¹ã«ãã(False ).ã¡ã¢ãªäœ¿çšéã®å¢å ãšåŒãæãã«ããã£ã¹ã¯I/Oãåæžããããšã§ãã¬ãŒãã³ã°é床ãåäžãããã |
device |
int ãŸã㯠str ãŸã㯠list |
None |
ãã¬ãŒãã³ã°ã«äœ¿çšããèšç®ããã€ã¹ãæå®ããŸã: ã·ã³ã°ã«GPU (device=0 )ããã«ãGPU(device=0,1 )ãCPU (device=cpu )ããŸãã¯ã¢ããã«ã»ã·ãªã³ã³çšã®MPS (device=mps ). |
workers |
int |
8 |
ããŒã¿ããŒãã®ããã®ã¯ãŒã«ãŒã¹ã¬ããæ°ïŒ1ã¹ã¬ããããã RANK ãã«ãGPU ãã¬ãŒãã³ã°ã®å ŽåïŒãããŒã¿ã®ååŠçãšã¢ãã«ãžã®æå
¥é床ã«åœ±é¿ããç¹ã«ãã«ãGPU ã»ããã¢ããã§æçšã |
project |
str |
None |
ãã¬ãŒãã³ã°åºåãä¿åããããããžã§ã¯ããã£ã¬ã¯ããªã®ååãç°ãªãå®éšãæŽçããŠä¿åã§ããããã«ããã |
name |
str |
None |
ãã¬ãŒãã³ã°å®è¡ã®ååããããžã§ã¯ããã©ã«ãå ã«ãµããã£ã¬ã¯ããªãäœæããããã«ãã¬ãŒãã³ã°ãã°ãšåºåãä¿åããŸãã |
exist_ok |
bool |
False |
Trueã®å Žåãæ¢åã®project/nameãã£ã¬ã¯ããªãäžæžãã§ããã以åã®åºåãæåã§æ¶å»ããå¿ èŠããªããç¹°ãè¿ãå®éšããã®ã«äŸ¿å©ã§ãã |
pretrained |
bool |
True |
äºåã«èšç·Žãããã¢ãã«ããåŠç¿ãéå§ãããã©ããã決å®ããŸããããŒã«å€ãŸãã¯ç¹å®ã®ã¢ãã«ãžã®æååãã¹ãæå®ããããããéã¿ãèªã¿èŸŒã¿ãŸãããã¬ãŒãã³ã°ã®å¹çãšã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããŸãã |
optimizer |
str |
'auto' |
ãã¬ãŒãã³ã°çšãªããã£ãã€ã¶ãŒã®éžæããªãã·ã§ã³ SGD , Adam , AdamW , NAdam , RAdam , RMSProp ãªã©ãããã㯠auto ã¢ãã«æ§æã«åºã¥ãèªåéžæãåæé床ãšå®å®æ§ã«åœ±é¿ããŸãã |
seed |
int |
0 |
ãã¬ãŒãã³ã°çšã®ã©ã³ãã ã·ãŒããèšå®ããåãã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³ã§å®è¡ããå Žåã®çµæã®åçŸæ§ã確ä¿ããŸãã |
deterministic |
bool |
True |
決å®è«çã¢ã«ãŽãªãºã ã®äœ¿çšã匷å¶ããåçŸæ§ã確ä¿ããããé決å®è«çã¢ã«ãŽãªãºã ã®å¶éã«ãããããã©ãŒãã³ã¹ãšã¹ããŒãã«åœ±é¿ãäžããå¯èœæ§ãããã |
single_cls |
bool |
False |
ãã«ãã¯ã©ã¹ããŒã¿ã»ããã®ãã¹ãŠã®ã¯ã©ã¹ã1ã€ã®ã¯ã©ã¹ãšããŠæ±ãããã€ããªåé¡ã¿ã¹ã¯ããåé¡ããããªããžã§ã¯ãã®ååšã«æ³šç®ããå Žåã«äŸ¿å©ã |
classes |
list[int] |
None |
ãã¬ãŒãã³ã°ããã¯ã©ã¹IDã®ãªã¹ããæå®ããŸãããã¬ãŒãã³ã°äžã«ç¹å®ã®ã¯ã©ã¹ã ããçµã蟌ãã§ãã©ãŒã«ã¹ããã®ã«äŸ¿å©ã§ãã |
rect |
bool |
False |
æå°éã®ããã£ã³ã°ã®ããã«ãããæ§æãæé©åããç©åœ¢åŠç¿ãå¯èœã«ãããå¹çãšã¹ããŒããåäžããŸãããã¢ãã«ã®ç²ŸåºŠã«åœ±é¿ãäžããå¯èœæ§ããããŸãã |
multi_scale |
bool |
False |
Enables multi-scale training by increasing/decreasing imgsz by upto a factor of 0.5 during training. Trains the model to be more accurate with multiple imgsz during inference. |
cos_lr |
bool |
False |
ã³ãµã€ã³åŠç¿çã¹ã±ãžã¥ãŒã©ãå©çšãããšããã¯ã«ããã£ãŠã³ãµã€ã³æ²ç·ã«åŸã£ãŠåŠç¿çã調æŽãããããè¯ãåæã®ããã®åŠç¿ç管çã«åœ¹ç«ã€ã |
close_mosaic |
int |
10 |
ãã¬ãŒãã³ã°å®äºåã«å®å®ããããããæåŸã®Nãšããã¯ã§ã®ã¢ã¶ã€ã¯ããŒã¿å¢å€§ãç¡å¹ã«ããã0ã«èšå®ãããšãã®æ©èœã¯ç¡å¹ã«ãªãã |
resume |
bool |
False |
æåŸã«ä¿åãããã§ãã¯ãã€ã³ããããã¬ãŒãã³ã°ãåéãã¢ãã«ã®éã¿ããªããã£ãã€ã¶ã®ç¶æ ããšããã¯ã«ãŠã³ããèªåçã«ããŒãããã·ãŒã ã¬ã¹ã«ãã¬ãŒãã³ã°ãç¶ç¶ã |
amp |
bool |
True |
èªåæ··å粟床(AMP)ãã¬ãŒãã³ã°ãå¯èœã«ãªããã¡ã¢ãªäœ¿çšéãåæžãã粟床ãžã®åœ±é¿ãæå°éã«æããªãããã¬ãŒãã³ã°ãé«éåã§ããå¯èœæ§ããããŸãã |
fraction |
float |
1.0 |
åŠç¿ã«äœ¿çšããããŒã¿ã»ããã®å²åãæå®ããŸããå®éšããªãœãŒã¹ãéãããŠããå Žåã«äŸ¿å©ã§ãã |
profile |
bool |
False |
ãã¬ãŒãã³ã°äžã®ONNX ãšTensorRT é床ã®ãããã¡ã€ãªã³ã°ãå¯èœã«ããã¢ãã«å±éã®æé©åã«åœ¹ç«ã€ã |
freeze |
int ãŸã㯠list |
None |
ã¢ãã«ã®æåã®Nå±€ããŸãã¯ã€ã³ããã¯ã¹ã§æå®ããå±€ãããªãŒãºããåŠç¿å¯èœãªãã©ã¡ãŒã¿ã®æ°ãæžããã埮調æŽã転移åŠç¿ã«åœ¹ç«ã€ã |
lr0 |
float |
0.01 |
åæåŠç¿ç SGD=1E-2 , Adam=1E-3 ) .ãã®å€ã調æŽããããšã¯ãæé©åããã»ã¹ã«ãšã£ãŠéåžžã«éèŠã§ãããã¢ãã«ã®éã¿ã®æŽæ°é床ã«åœ±é¿ããã |
lrf |
float |
0.01 |
åæåŠç¿çã«å¯ŸããæçµåŠç¿çã®å²å = (lr0 * lrf )ãã¹ã±ãžã¥ãŒã©ãšçµã¿åãããŠäœ¿çšããæéçµéãšãšãã«åŠç¿çã調æŽããã |
momentum |
float |
0.937 |
SGDã®å Žåã¯ã¢ã¡ã³ã¿ã ä¿æ°ãAdamãªããã£ãã€ã¶ã®å Žåã¯Î²1ãéå»ã®åŸé ãçŸåšã®æŽæ°ã«åæ ãããã |
weight_decay |
float |
0.0005 |
L2æ£ååé ã¯ããªãŒããŒãã£ããã£ã³ã°ãé²ãããã«å€§ããªéã¿ã«ããã«ãã£ãäžããã |
warmup_epochs |
float |
3.0 |
åŠç¿çã®ãŠã©ãŒã ã¢ããã®ããã®ãšããã¯æ°ãäœãå€ããåæåŠç¿çãŸã§åŸã ã«åŠç¿çãäžããŠãããæ©ã段éã§åŠç¿ãå®å®ãããã |
warmup_momentum |
float |
0.8 |
ãŠã©ãŒã ã¢ããæã®åæã¢ã¡ã³ã¿ã ã¯ããŠã©ãŒã ã¢ããæéäžã«èšå®ãããã¢ã¡ã³ã¿ã ã«åŸã ã«èª¿æŽãããã |
warmup_bias_lr |
float |
0.1 |
ãŠã©ãŒã ã¢ãããã§ãŒãºã«ããããã€ã¢ã¹ãã©ã¡ãŒã¿ã®åŠç¿çã¯ãåæãšããã¯ã«ãããã¢ãã«åŠç¿ãå®å®ãããã®ã«åœ¹ç«ã€ã |
box |
float |
7.5 |
ããŠã³ãã£ã³ã°ããã¯ã¹ã®åº§æšãæ£ç¢ºã«äºæž¬ããããšã«ã©ã®çšåºŠéç¹ã眮ããã«åœ±é¿ããã |
cls |
float |
0.5 |
å šæ倱é¢æ°ã«ãããåé¡æ倱ã®éã¿ã§ãä»ã®ã³ã³ããŒãã³ãã«å¯Ÿããæ£ããã¯ã©ã¹äºæž¬ã®éèŠæ§ã«åœ±é¿ããã |
dfl |
float |
1.5 |
ååžãã©ãŒã«ã«ãã¹ã®éã¿ãYOLO ã®ç¹å®ã®ããŒãžã§ã³ã§ã现ããåé¡ã«äœ¿çšãããã |
pose |
float |
12.0 |
ããŒãºæšå®çšã«åŠç¿ãããã¢ãã«ã«ãããããŒãºãã¹ã®éã¿ãããŒãºããŒãã€ã³ããæ£ç¢ºã«äºæž¬ããããšã«éç¹ã眮ãããŠããããšã圱é¿ããŠããã |
kobj |
float |
2.0 |
ããŒãºæšå®ã¢ãã«ã«ãããããŒãã€ã³ãã®ãªããžã§ã¯ããã¹æ倱ã®éã¿ãæ€åºä¿¡é ŒåºŠãšããŒãºç²ŸåºŠã®ãã©ã³ã¹ã |
nbs |
int |
64 |
ãã¹ãæ£èŠåããããã®å ¬ç§°ããããµã€ãºã |
overlap_mask |
bool |
True |
Determines whether object masks should be merged into a single mask for training, or kept separate for each object. In case of overlap, the smaller mask is overlaid on top of the larger mask during merge. |
mask_ratio |
int |
4 |
ã»ã°ã¡ã³ããŒã·ã§ã³ãã¹ã¯ã®ããŠã³ãµã³ãã«æ¯ããã¬ãŒãã³ã°æã«äœ¿çšãããã¹ã¯ã®è§£å床ã«åœ±é¿ããã |
dropout |
float |
0.0 |
åé¡ã¿ã¹ã¯ã«ãããæ£ååã®ããã®ããããã¢ãŠãçããã¬ãŒãã³ã°äžã«ãŠããããã©ã³ãã ã«çç¥ããããšã§ãªãŒããŒãã£ããã£ã³ã°ãé²ãã |
val |
bool |
True |
ãã¬ãŒãã³ã°äžã«æ€èšŒãæå¹ã«ããå¥ã®ããŒã¿ã»ããã§ã¢ãã«ã®æ§èœãå®æçã«è©äŸ¡ã§ããããã«ããã |
plots |
bool |
False |
äºæž¬äŸã ãã§ãªããèšç·Žãšæ€èšŒã®ã¡ããªã¯ã¹ã®ãããããçæããŠä¿åããããšã§ãã¢ãã«ã®ããã©ãŒãã³ã¹ãšåŠç¿ã®é²è¡ã«é¢ããèŠèŠçãªæŽå¯ãæäŸããŸãã |
ããããµã€ãºèšå®ã«é¢ãã泚æäºé
ã«ã€ã㊠batch
åŒæ°ã¯3ã€ã®æ¹æ³ã§èšå®ã§ããïŒ
- åºå®ããããµã€ãº:æŽæ°å€ãèšå®ããïŒäŸïŒ
batch=16
)ãããããããã®ç»åæ°ãçŽæ¥æå®ããã - ãªãŒãã¢ãŒã (60%GPU ã¡ã¢ãªãŒ):çšé
batch=-1
ã䜿çšããŠãCUDA ã¡ã¢ãªäœ¿çšçãçŽ 60% ã«ãªãããã«ããããµã€ãºãèªåçã«èª¿æŽããŸãã - å©çšçã«ãããªãŒãã¢ãŒã:端æ°å€ãèšå®ããïŒäŸïŒ
batch=0.70
) ã䜿ã£ãŠãGPU ã¡ã¢ãªäœ¿çšéã®æå®ãããå²åã«åºã¥ããŠããããµã€ãºã調æŽããã
èšå®ã®äºæž¬
YOLO ã¢ãã«ã®äºæž¬èšå®ã¯ããã€ããŒãã©ã¡ãŒã¿ãšèšå®ã®ç¯å²ãå å«ããæ°ããããŒã¿ã«å¯Ÿããæšè«äžã®ã¢ãã«ã®ããã©ãŒãã³ã¹ãã¹ããŒãã粟床ã«åœ±é¿ãããç¹å®ã®ã¿ã¹ã¯ã«å¯ŸããŠæé©ãªããã©ãŒãã³ã¹ãéæããããã«ã¯ããããã®èšå®ã泚ææ·±ããã¥ãŒãã³ã°ããå®éšããããšãäžå¯æ¬ ã§ããäž»èŠãªèšå®ã«ã¯ãä¿¡é ŒåºŠéŸå€ãéæ倧æå¶ïŒNMSïŒéŸå€ãããã³èæ ®ããã¯ã©ã¹æ°ãå«ãŸããŸããäºæž¬ããã»ã¹ã«åœ±é¿ãäžãããã®ä»ã®èŠå ãšããŠã¯ãå ¥åããŒã¿ã®ãµã€ãºãšåœ¢åŒããã¹ã¯ãããã¯ã¹ããšã®è€æ°ã®ã©ãã«ã®ãããªè£å©çãªç¹åŸŽã®ååšãã¢ãã«ãæ¡çšãããç¹å®ã®ã¿ã¹ã¯ãªã©ãããã
æšè«åŒæ°ïŒ
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
source |
str |
'ultralytics/assets' |
æšè«ã®ããŒã¿ãœãŒã¹ãæå®ããŸããç»åãã¹ããããªãã¡ã€ã«ããã£ã¬ã¯ããªãURLããŸãã¯ã©ã€ããã£ãŒãã®ããã€ã¹IDãæå®ã§ããŸããå¹ åºããã©ãŒããããšãœãŒã¹ããµããŒãããŠãããããããŸããŸãªã¿ã€ãã®å ¥åã«æè»ã«å¯Ÿå¿ã§ããŸãã |
conf |
float |
0.25 |
æ€åºã®æå°ä¿¡é ŒåºŠãããå€ãèšå®ããŸãããã®éŸå€ä»¥äžã®ä¿¡é ŒåºŠã§æ€åºããããªããžã§ã¯ãã¯ç¡èŠãããŸãããã®å€ã調æŽããããšã§ã誀æ€åºãæžããããšãã§ããŸãã |
iou |
float |
0.7 |
Non-Maximum Suppression (NMS)ã®Intersection Over Union(IoU)ãããå€ãå€ãäœãã»ã©ãéè€ããããã¯ã¹ãæé€ãããããæ€åºæ°ãå°ãªããªããéè€ãæžããã®ã«äŸ¿å©ã§ãã |
imgsz |
int ãŸã㯠tuple |
640 |
æšè«ã®ããã®ç»åãµã€ãºãå®çŸ©ãããåäžã®æŽæ°å€ 640 æ£æ¹åœ¢ã«ãªãµã€ãºããå ŽåããŸãã¯ïŒé«ããå¹
ïŒã®ã¿ãã«ã䜿çšããŸããé©åãªãµã€ãžã³ã°ã¯æ€åºãåäžããã 粟床 ãšåŠçé床ã |
half |
bool |
False |
å粟床(FP16)æšè«ãå¯èœã«ãªãããµããŒããããŠããGPUã§ã®ã¢ãã«æšè«ãã粟床ãžã®åœ±é¿ãæå°éã«æããªããé«éåããããšãã§ããŸãã |
device |
str |
None |
æšè«ãè¡ãããã€ã¹ãæå®ããïŒäŸïŒ cpu , cuda:0 ãŸã㯠0 ).CPU ãç¹å®ã®GPU ããŸãã¯ã¢ãã«å®è¡çšã®ä»ã®ã³ã³ãã¥ãŒãã»ããã€ã¹ãéžæããããšãã§ããŸãã |
batch |
int |
1 |
æšè«ã®ãããã»ãµã€ãºãæå®ããïŒãœãŒã¹ã ãã£ã¬ã¯ããªããããªãã¡ã€ã«ããŸã㯠.txt ãã¡ã€ã«).ããããµã€ãºã倧ããã»ã©ãæšè«ã«å¿
èŠãªç·æéãççž®ããé«ãã¹ã«ãŒããããæäŸã§ããã |
max_det |
int |
300 |
ç»åãããã®æ倧æ€åºæ°ã1åã®æšè«ã§ã¢ãã«ãæ€åºã§ãããªããžã§ã¯ãã®ç·æ°ãå¶éããå¯éããã·ãŒã³ã§ã®éå°ãªåºåãé²ããŸãã |
vid_stride |
int |
1 |
ãããªå ¥åã®ãã¬ãŒã ã¹ãã©ã€ããæéçãªè§£å床ãç ç²ã«ããŠåŠçãé«éåããããã«ããããªã®ãã¬ãŒã ãã¹ãããã§ããããã«ããã1ã®å€ã¯ãã¹ãŠã®ãã¬ãŒã ãåŠçãããã以äžã®å€ã¯ãã¬ãŒã ãã¹ãããããã |
stream_buffer |
bool |
False |
ãããªã¹ããªãŒã ã®åä¿¡ãã¬ãŒã ããã¥ãŒã«å
¥ãããã©ããã決å®ããããã False , old frames get dropped to accommodate new frames (optimized for real-time applications). If `True', queues new frames in a buffer, ensuring no frames get skipped, but will cause latency if inference FPS is lower than stream FPS. |
visualize |
bool |
False |
æšè«äžã«ã¢ãã«ã®ç¹åŸŽãå¯èŠåããã¢ãã«ãäœããèŠãŠãããã®ããç¥ãããšãã§ããŸãããããã°ãã¢ãã«ã®è§£éã«åœ¹ç«ã¡ãŸãã |
augment |
bool |
False |
äºæž¬ã«å¯Ÿãããã¹ãæéæ¡åŒµïŒTTAïŒãå¯èœã«ããæšè«é床ãç ç²ã«ããããšã§æ€åºã®ããã¹ãæ§ãåäžãããå¯èœæ§ãããã |
agnostic_nms |
bool |
False |
ç°ãªãã¯ã©ã¹ã®ãªãŒããŒã©ããããããã¯ã¹ãããŒãžãããã¯ã©ã¹ã«ãšããããªãéæ倧æå¶ïŒNMSïŒãæå¹ã«ããŸããã¯ã©ã¹ã®éè€ãäžè¬çãªãã«ãã¯ã©ã¹æ€åºã·ããªãªã§åœ¹ç«ã¡ãŸãã |
classes |
list[int] |
None |
ã¯ã©ã¹ ID ã®ã»ããã«äºæž¬ããã£ã«ã¿ãªã³ã°ããŸããæå®ãããã¯ã©ã¹ã«å±ããæ€åºã®ã¿ãè¿ãããŸããè€æ°ã¯ã©ã¹ã®æ€åºã¿ã¹ã¯ã§ãé¢é£ãããªããžã§ã¯ãã«çŠç¹ãåœãŠãã®ã«äŸ¿å©ã§ãã |
retina_masks |
bool |
False |
é«è§£å床ã®ã»ã°ã¡ã³ããŒã·ã§ã³ãã¹ã¯ãè¿ããŸããè¿ããããã¹ã¯ (masks.data )ãæå¹ãªããå
ã®ç»åãµã€ãºãšäžèŽãããç¡å¹ã«ãããšãæšè«æã«äœ¿ãããç»åãµã€ãºã«ãªããŸãã |
embed |
list[int] |
None |
ç¹åŸŽãã¯ãã«ãŸãã¯åã蟌ã¿ãæœåºããã¬ã€ã€ãæå®ããŸããã¯ã©ã¹ã¿ãªã³ã°ãé¡äŒŒæ€çŽ¢ã®ãããªäžæµã®ã¿ã¹ã¯ã«äŸ¿å©ã§ãã |
project |
str |
None |
以äžã®å Žåãäºæž¬åºåãä¿åããããããžã§ã¯ãã»ãã£ã¬ã¯ããªã®ååã save ãæå¹ã«ãªã£ãŠããã |
name |
str |
None |
äºæž¬ã©ã³ã®ååããããžã§ã¯ãã»ãã©ã«ãå
ã«ãµãã»ãã£ã¬ã¯ããªãäœæããããã«äœ¿çšãããŸãã save ãæå¹ã«ãªã£ãŠããã |
å¯èŠåã®åŒæ°ïŒ
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
show |
bool |
False |
ãã True 泚éä»ãã®ç»åããããªããŠã£ã³ããŠã«è¡šç€ºããŸããéçºäžããã¹ãäžã®å³æã®èŠèŠçãã£ãŒãããã¯ã«äŸ¿å©ã§ãã |
save |
bool |
False ãŸã㯠True |
泚éä»ãã®ç»åãåç»ããã¡ã€ã«ã«ä¿åã§ããŸããææžåããããªãåæãçµæã®å ±æã«äŸ¿å©ã§ããããã©ã«ãã¯ãCLI ã®å Žå㯠TrueãPython ã®å Žå㯠False ã§ãã |
save_frames |
bool |
False |
åç»ãåŠçããéãåã ã®ãã¬ãŒã ãç»åãšããŠä¿åããŸããç¹å®ã®ãã¬ãŒã ãæœåºãããããã¬ãŒã ããšã®è©³çŽ°ãªåæã«äŸ¿å©ã§ãã |
save_txt |
bool |
False |
æ€åºçµæãããã¹ããã¡ã€ã«ã«ä¿åããŸãã [class] [x_center] [y_center] [width] [height] [confidence] .ä»ã®åæããŒã«ãšã®çµ±åã«äŸ¿å©ã |
save_conf |
bool |
False |
ä¿åãããããã¹ããã¡ã€ã«ã«ä¿¡é ŒåºŠã¹ã³ã¢ãå«ãŸããŸããåŸåŠçãåæã«å©çšã§ãã詳现ãªæ å ±ã匷åãããŸãã |
save_crop |
bool |
False |
æ€åºç»åãããªãã³ã°ããŠä¿åããŸããããŒã¿ã»ããã®è£åŒ·ãåæãç¹å®ã®å¯Ÿè±¡ç©ã«ç¹åããããŒã¿ã»ããã®äœæã«äŸ¿å©ã§ãã |
show_labels |
bool |
True |
èŠèŠåºåã«åæ€åºã®ã©ãã«ã衚瀺ãæ€åºããããªããžã§ã¯ããå³åº§ã«ç解ã§ããŸãã |
show_conf |
bool |
True |
åæ€åºã®ä¿¡é Œã¹ã³ã¢ãã©ãã«ãšäžç·ã«è¡šç€ºãããŸããåæ€åºã«å¯Ÿããã¢ãã«ã®ç¢ºä¿¡åºŠã瀺ããŸãã |
show_boxes |
bool |
True |
æ€åºããããªããžã§ã¯ãã®åšå²ã«ããŠã³ãã£ã³ã°ããã¯ã¹ãæç»ããŸããç»åããããªãã¬ãŒã å ã®ãªããžã§ã¯ããèŠèŠçã«èå¥ããäœçœ®ãç¹å®ããããã«äžå¯æ¬ ã§ãã |
line_width |
None ãŸã㯠int |
None |
ããŠã³ãã£ã³ã°ããã¯ã¹ã®ç·å¹
ãæå®ããŸãããã None ç·å¹
ã¯ç»åãµã€ãºã«å¿ããŠèªåçã«èª¿æŽãããŸããèŠèŠçã«ããããããã«ã¹ã¿ãã€ãºã§ããŸãã |
ããªããŒã·ã§ã³èšå®
YOLO ã¢ãã«ã®valïŒæ€èšŒïŒèšå®ã«ã¯ãæ€èšŒããŒã¿ã»ããäžã§ã¢ãã«ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããããã«äœ¿çšãããæ§ã ãªãã€ããŒãã©ã¡ãŒã¿ãšèšå®ãå«ãŸããããããã®èšå®ã¯ãã¢ãã«ã®æ§èœãã¹ããŒãã粟床ã«åœ±é¿ããŸããäžè¬çãªYOLO ã®æ€èšŒèšå®ã«ã¯ãããããµã€ãºããã¬ãŒãã³ã°äžã®æ€èšŒé »åºŠãæ§èœè©äŸ¡ã¡ããªã¯ã¹ãå«ãŸãããæ€èšŒããã»ã¹ã«åœ±é¿ãäžããä»ã®èŠå ã«ã¯ãæ€èšŒããŒã¿ã»ããã®ãµã€ãºãšæ§æãããã³ã¢ãã«ãæ¡çšãããç¹å®ã®ã¿ã¹ã¯ãå«ãŸããŸãã
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
data |
str |
None |
ããŒã¿ã»ããèšå®ãã¡ã€ã«ãžã®ãã¹ãæå®ããïŒäŸïŒ coco8.yaml ).ãã®ãã¡ã€ã«ã«ã¯ æ€èšŒããŒã¿ã¯ã©ã¹åãã¯ã©ã¹æ° |
imgsz |
int |
640 |
å ¥åç»åã®ãµã€ãºãå®çŸ©ããŸãããã¹ãŠã®ç»åã¯ãåŠçåã«ãã®å¯žæ³ã«ãªãµã€ãºãããŸãã |
batch |
int |
16 |
ããããããã®ç»åæ°ãèšå®ããŸãã䜿çšæ¹æ³ -1 ãªãŒããããã¯ãGPU ã¡ã¢ãªã®å¯çšæ§ã«åºã¥ããŠèªåçã«èª¿æŽãããŸãã |
save_json |
bool |
False |
ãã True ããã«åæããããä»ã®ããŒã«ãšçµ±åãããããããã«ãçµæãJSONãã¡ã€ã«ã«ä¿åããŸãã |
save_hybrid |
bool |
False |
ãã True ã©ãã«ã®ãã€ããªããããŒãžã§ã³ã¯ãå
ã®ã¢ãããŒã·ã§ã³ãšè¿œå ã¢ãã«ã®äºæž¬ãçµã¿åãããŠä¿åããŸãã |
conf |
float |
0.001 |
æ€åºã®æå°ä¿¡é ŒåºŠéŸå€ãèšå®ããããã®éŸå€ä»¥äžã®ä¿¡é ŒåºŠã®æ€åºã¯ç Žæ£ãããã |
iou |
float |
0.6 |
Non-Maximum SuppressionïŒNMSïŒã®Intersection Over UnionïŒIoUïŒãããå€ãèšå®ããŸããéè€æ€åºã®äœæžã«åœ¹ç«ã¡ãŸãã |
max_det |
int |
300 |
ç»åãããã®æ倧æ€åºæ°ãå¶éããŸããå¯ãªã·ãŒã³ã§éå°ãªæ€åºãé²ãã®ã«äŸ¿å©ã§ãã |
half |
bool |
True |
å粟床(FP16)èšç®ãå¯èœã«ãªããã¡ã¢ãªäœ¿çšéãåæžããã粟床ãžã®åœ±é¿ãæå°éã«æããªããé床ãåäžããå¯èœæ§ããããŸãã |
device |
str |
None |
æ€èšŒçšããã€ã¹ãæå®ãã (cpu , cuda:0 ãªã©ïŒãCPU ãŸãã¯GPU ã®ãªãœãŒã¹ãæè»ã«å©çšã§ããã |
dnn |
bool |
False |
ãã True ã䜿çšããŠããã ãªãŒãã³CV ONNX ã¢ãã«æšè«ã®ããã®DNNã¢ãžã¥ãŒã«ã PyTorch æšè«æ¹æ³ã |
plots |
bool |
False |
ã«èšå®ããå Žå True ãŸããã¢ãã«ã®æ§èœãèŠèŠçã«è©äŸ¡ããããã«ãäºæž¬å€ãšã°ã©ã³ããã¥ã«ãŒã¹ã®ãããããçæããä¿åããŸãã |
rect |
bool |
True |
ãã True ç©åœ¢æšè«ããããã³ã°ã«äœ¿çšããããšã§ãããã£ã³ã°ãæžãããã¹ããŒããšå¹çãåäžãããå¯èœæ§ãããã |
split |
str |
val |
æ€èšŒã«äœ¿ãããŒã¿ã»ããã®åå²ã決å®ãã (val , test ããã㯠train ).æ§èœè©äŸ¡çšã®ããŒã¿ã»ã°ã¡ã³ããæè»ã«éžæã§ããã |
project |
str |
None |
æ€èšŒåºåãä¿åããããããžã§ã¯ãã»ãã£ã¬ã¯ããªã®ååã |
name |
str |
None |
Name of the validation run. Used for creating a subdirectory within the project folder, where validation logs and outputs are stored. |
æ€èšŒããŒã¿ã»ããã§æé©ãªããã©ãŒãã³ã¹ã確ä¿ãããªãŒããŒãã£ããã£ã³ã°ãæ€åºã»é²æ¢ããããã«ã¯ããããã®èšå®ãæ éã«ãã¥ãŒãã³ã°ããå®éšããããšã極ããŠéèŠã§ããã
ãšã¯ã¹ããŒãèšå®
YOLO ã¢ãã«ã®ãšã¯ã¹ããŒãèšå®ã«ã¯ãç°ãªãç°å¢ããã©ãããã©ãŒã ã§äœ¿çšããããã®ã¢ãã«ã®ä¿åããšã¯ã¹ããŒãã«é¢ããèšå®ããªãã·ã§ã³ãå«ãŸããŸãããããã®èšå®ã¯ãã¢ãã«ã®ããã©ãŒãã³ã¹ããµã€ãºãããŸããŸãªã·ã¹ãã ãšã®äºææ§ã«åœ±é¿ãäžããå¯èœæ§ããããŸããäž»ãªãšã¯ã¹ããŒãèšå®ã«ã¯ããšã¯ã¹ããŒããããã¢ãã«ã®ãã¡ã€ã«åœ¢åŒïŒäŸïŒONNX ãTensorFlow SavedModel ïŒãã¿ãŒã²ããã»ããã€ã¹ïŒäŸïŒCPU ãGPU ïŒãããã³ãã¹ã¯ãããã¯ã¹ããšã®è€æ°ã®ã©ãã«ãªã©ã®è¿œå æ©èœãå«ãŸããããšã¯ã¹ããŒãããã»ã¹ã¯ãã¢ãã«åºæã®ã¿ã¹ã¯ãããšã¯ã¹ããŒãå ã®ç°å¢ããã©ãããã©ãŒã ã®èŠä»¶ãå¶çŽã«ã圱é¿ãããå ŽåããããŸãã
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
format |
str |
'torchscript' |
ãšã¯ã¹ããŒããããã¢ãã«ã®ã¿ãŒã²ãããã©ãŒãããã 'onnx' , 'torchscript' , 'tensorflow' ãªã©ãããŸããŸãªå±éç°å¢ãšã®äºææ§ãå®çŸ©ããŠããã |
imgsz |
int ãŸã㯠tuple |
640 |
ã¢ãã«å
¥åã«å¿
èŠãªç»åãµã€ãºãæ£æ¹åœ¢ç»åã®å Žåã¯æŽæ°ïŒæ£æ¹åœ¢ç»åã®å Žåã¯ã¿ãã«ã«ãªããŸãïŒ (height, width) å
·äœçãªå¯žæ³ã«ã€ããŠã¯ |
keras |
bool |
False |
ã®Kerasãã©ãŒããããžã®ãšã¯ã¹ããŒããå¯èœã«ããã TensorFlowSavedModel TensorFlow ãµãŒãã³ã°ãš API ãšã®äºææ§ãæäŸããŸãã |
optimize |
bool |
False |
TorchScript ãžã®ãšã¯ã¹ããŒãæã«ã¢ãã€ã«ããã€ã¹åãã®æé©åãé©çšããã¢ãã«ãµã€ãºãçž®å°ããŠããã©ãŒãã³ã¹ãåäžãããå¯èœæ§ããããŸãã |
half |
bool |
False |
FP16ïŒå粟床ïŒéååãæå¹ã«ããã¢ãã«ãµã€ãºãçž®å°ãããµããŒããããŠããããŒããŠã§ã¢ã§ã®æšè«ãé«éåããå¯èœæ§ããããŸãã |
int8 |
bool |
False |
INT8éååãæå¹ã«ããã¢ãã«ãããã«å§çž®ããäž»ã«ãšããžããã€ã¹ã®ããã«ãæå°éã®ç²ŸåºŠæ倱ã§æšè«ãé«éåããã |
dynamic |
bool |
False |
ONNX ãTensorRT ãOpenVINO ãšã¯ã¹ããŒãã®ããã®åçãªå ¥åãµã€ãºãå¯èœã«ããããŸããŸãªç»å寞æ³ãæ±ãæè»æ§ãé«ããŸãã |
simplify |
bool |
True |
ã§ã®ONNX ãšã¯ã¹ããŒãã®ã¢ãã«ã°ã©ããç°¡çŽ åããã onnxslim ããã©ãŒãã³ã¹ãšäºææ§ãåäžãããå¯èœæ§ãããã |
opset |
int |
None |
ç°ãªãONNX ããŒãµãŒãã©ã³ã¿ã€ã ãšã®äºææ§ã®ããã«ãONNX ã®ãªãã»ããã®ããŒãžã§ã³ãæå®ããŸããèšå®ãããŠããªãå Žåã¯ããµããŒããããŠããææ°ã®ããŒãžã§ã³ã䜿çšããŸãã |
workspace |
float ãŸã㯠None |
None |
TensorRT ãã¡ã¢ãªäœ¿çšéãšããã©ãŒãã³ã¹ã®ãã©ã³ã¹ããšãããã«ãã¯ãŒã¯ã¹ããŒã¹ã®æ倧ãµã€ãºãGiBåäœã§èšå®ããã None TensorRT ãããã€ã¹ã®æ倧å€ãŸã§èªåã§å²ãåœãŠãããã |
nms |
bool |
False |
æ£ç¢ºã§å¹ççãªæ€åºã®åŸåŠçã«äžå¯æ¬ ãªéæ倧æå¶ïŒNMSïŒãCoreML ãšã¯ã¹ããŒãã«è¿œå ããŸãã |
batch |
int |
1 |
ãšã¯ã¹ããŒãã¢ãã«ã®ãããæšè«ãµã€ãºããŸãã¯ãšã¯ã¹ããŒããããã¢ãã«ãåæã«åŠçããç»åã®æ倧æ°ãæå®ããŸãã predict ã¢ãŒãã ã |
device |
str |
None |
ãšã¯ã¹ããŒãããããã€ã¹ãæå®ïŒGPU (device=0 )ãCPU (device=cpu )ãã¢ããã«ã»ã·ãªã³ã³çšMPS (device=mps )ãŸãã¯DLA forNVIDIA Jetson (device=dla:0 ãŸã㯠device=dla:1 ). |
ãšã¯ã¹ããŒããããã¢ãã«ãæå³ããããŠãŒã¹ã±ãŒã¹ã«æé©åãããã¿ãŒã²ããç°å¢ã§å¹æçã«æ©èœããããã«ããããã®èšå®ãæ éã«æ§æããããšã極ããŠéèŠã§ãã
ãœãªã¥ãŒã·ã§ã³èšå®
Ultralytics ãœãªã¥ãŒã·ã§ã³ã®ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³èšå®ã¯ããªããžã§ã¯ãã«ãŠã³ããããŒããããäœæãã¯ãŒã¯ã¢ãŠã远跡ãããŒã¿åæããŸãŒã³è¿œè·¡ããã¥ãŒç®¡çãå°åããŒã¹ã®ã«ãŠã³ããªã©ãæ§ã ãªã¿ã¹ã¯ã®ããã«ã¢ãã«ãã«ã¹ã¿ãã€ãºããæè»ãªæ¹æ³ãæäŸããŸãããããã®ãªãã·ã§ã³ã«ãããç¹å®ã®ããŒãºã«åãããæ£ç¢ºã§æçšãªçµæãåŸãããã®ã»ããã¢ãããç°¡åã«èª¿æŽããããšãã§ããŸãã
è°è« | ã¿ã€ã | ããã©ã«ã | 説æ |
---|---|---|---|
region |
list |
[(20, 400), (1080, 400), (1080, 360), (20, 360)] |
ãªããžã§ã¯ãã«ãŠã³ããåŸ ã¡è¡åç£èŠããã©ãã¯ãŸãŒã³ãé床æšå®ã®ããã®é åãã€ã³ããå®çŸ©ããŸãããã€ã³ãã¯ãåæçšã®å€è§åœ¢é åã圢æãã座æšãšããŠå®çŸ©ãããŸãã |
show_in |
bool |
True |
å®çŸ©ãããé åã«å ¥ã£ããšã«ãŠã³ãããããªããžã§ã¯ãã衚瀺ãããã©ããã瀺ããé²å ¥åŸåã®ç£èŠãªã©ãå®éã®åæã«äžå¯æ¬ ã |
show_out |
bool |
True |
å®çŸ©ãããé åããåºããšã«ãŠã³ãããããªããžã§ã¯ãã衚瀺ãããã©ããã瀺ããéåºè¿œè·¡ãšåæãå¿ èŠãšããã¢ããªã±ãŒã·ã§ã³ã«äŸ¿å©ã§ãã |
colormap |
int or tuple |
COLORMAP_PARULA |
ããŒããããå¯èŠåã®ããã« OpenCV ããµããŒãããã«ã©ãŒããããæå®ããŸããããã©ã«ã㯠COLORMAP_PARULA ããããä»ã®ã«ã©ãŒãããã䜿ãããšãã§ããã |
up_angle |
float |
145.0 |
ãã¬ãŒãã³ã°ã¢ãã¿ãªã³ã°ã§ãã¢ãããããžã·ã§ã³ãæ€åºããããã®è§åºŠãããå€ãç°ãªããšã¯ãµãµã€ãºã®ããŒãã€ã³ãã®äœçœ®ã«åºã¥ããŠèª¿æŽã§ããŸãã |
down_angle |
float |
90.0 |
ã¯ãŒã¯ã¢ãŠãã®ã¢ãã¿ãªã³ã°ã§ãããŠã³ãããžã·ã§ã³ãæ€åºããããã®è§åºŠãããå€ãç¹å®ã®ãšã¯ãµãµã€ãºã®ããŒãã€ã³ãäœçœ®ã«åºã¥ããŠèª¿æŽããŸãã |
kpts |
list |
[6, 8, 10] |
ã¯ãŒã¯ã¢ãŠãã®ã¢ãã¿ãªã³ã°ã«äœ¿çšãããããŒãã€ã³ãã®ãªã¹ãããããã®ããŒãã€ã³ãã¯ãè ç«ãŠäŒããæžåãã¹ã¯ã¯ãããè ¹çéåãªã©ã®ãšã¯ãµãµã€ãºã§ãè©ãèãæéŠãªã©ã®äœã®é¢ç¯ãéšäœã«å¯Ÿå¿ããŠããŸãã |
analytics_type |
str |
line |
çæããåæå¯èŠåã®ã¿ã€ããæå®ããŸãããªãã·ã§ã³ã«ã¯ä»¥äžãå«ãŸããŸãã "line" , "pie" , "bar" ããã㯠"area" .ããã©ã«ã㯠"line" ãã¬ã³ãã®èŠèŠåã®ããã«ã |
json_file |
str |
None |
é§è»å Žã·ã¹ãã ãŸãã¯åæ§ã®ã¢ããªã±ãŒã·ã§ã³ã®ããã®é åãå®çŸ©ããJSONãã¡ã€ã«ãžã®ãã¹ãåæãšãªã¢ã®æè»ãªèšå®ãå¯èœã |
records |
int |
5 |
Total detections count that triggers an automated email notification about unusual activity. |
ãœãªã¥ãŒã·ã§ã³ã¬ã€ã
ãªãŒã°ã¡ã³ããŒã·ã§ã³ã®èšå®
ãªãŒã°ã¡ã³ããŒã·ã§ã³æè¡ã¯ãåŠç¿ããŒã¿ã«å¯å€æ§ãå°å ¥ããããšã§ãYOLO ã¢ãã«ã®ããã¹ãæ§ãšããã©ãŒãã³ã¹ãåäžãããã¢ãã«ãæªç¥ã®ããŒã¿ã«å¯ŸããŠããè¯ãæ±åã§ããããã«ããããã«äžå¯æ¬ ã§ãã以äžã®è¡šã¯ãããããã®ãªãŒã°ã¡ã³ããŒã·ã§ã³ã®ç®çãšå¹æã®æŠèŠã§ãïŒ
è°è« | ã¿ã€ã | ããã©ã«ã | ã¬ã³ãž | 説æ |
---|---|---|---|---|
hsv_h |
float |
0.015 |
0.0 - 1.0 |
ç»åã®è²çžãã«ã©ãŒãã€ãŒã«ã®æ°åã®äžã ã調æŽããè²ã®ã°ãã€ããå°å ¥ããŸããç°ãªãç §ææ¡ä»¶ã§ã®ã¢ãã«ã®äžè¬åãå©ããŸãã |
hsv_s |
float |
0.7 |
0.0 - 1.0 |
ç»åã®åœ©åºŠãã»ãã®å°ãå€åãããè²ã®æ¿ãã«åœ±é¿ãäžããŸããç°ãªãç°å¢æ¡ä»¶ãã·ãã¥ã¬ãŒãããã®ã«äŸ¿å©ã§ãã |
hsv_v |
float |
0.4 |
0.0 - 1.0 |
ç»åã®å€ïŒæããïŒãå°æ°ã§å€æŽããããŸããŸãªç §ææ¡ä»¶äžã§ã¢ãã«ãããŸãæ©èœããããã«ããŸãã |
degrees |
float |
0.0 |
-180 - +180 |
æå®ãã床æ°ã®ç¯å²å ã§ç»åãã©ã³ãã ã«å転ãããããŸããŸãªåãã®ãªããžã§ã¯ããèªèããã¢ãã«ã®èœåãåäžãããŸãã |
translate |
float |
0.1 |
0.0 - 1.0 |
ç»åãæ°Žå¹³æ¹åãšåçŽæ¹åã«ç»åãµã€ãºã®æ°åã®äžã ãå¹³è¡ç§»åãããéšåçã«èŠããç©äœãæ€åºããåŠç¿ã«åœ¹ç«ãŠãã |
scale |
float |
0.5 |
>=0.0 |
ã²ã€ã³ä¿æ°ã§ç»åãã¹ã±ãŒãªã³ã°ããã«ã¡ã©ããç°ãªãè·é¢ã«ããç©äœãã·ãã¥ã¬ãŒãããã |
shear |
float |
0.0 |
-180 - +180 |
ç»åãæå®ããè§åºŠã§åæããç©äœãç°ãªãè§åºŠããèŠããšãã®å¹æãæš¡å£ããã |
perspective |
float |
0.0 |
0.0 - 0.001 |
ç»åã«ã©ã³ãã ãªéèŠå€æãé©çšãã3D空éã®ãªããžã§ã¯ããç解ããã¢ãã«ã®èœåãé«ããã |
flipud |
float |
0.0 |
0.0 - 1.0 |
æå®ããã確çã§ç»åãäžäžå転ããã察象ç©ã®ç¹æ§ã«åœ±é¿ãäžããããšãªãããŒã¿ã®ã°ãã€ãã倧ããããã |
fliplr |
float |
0.5 |
0.0 - 1.0 |
å·Šå³å¯Ÿç§°ã®ãªããžã§ã¯ããåŠç¿ããããããŒã¿ã»ããã®å€æ§æ§ãé«ãããããã®ã«åœ¹ç«ã€ã |
bgr |
float |
0.0 |
0.0 - 1.0 |
æå®ãã確çã§ç»åãã£ã³ãã«ãRGBããBGRã«å転ãããŸãã誀ã£ããã£ã³ãã«é åºã«å¯Ÿããããã¹ãæ§ãé«ããã®ã«åœ¹ç«ã¡ãŸãã |
mosaic |
float |
1.0 |
0.0 - 1.0 |
4æã®ãã¬ãŒãã³ã°ç»åã1æã«åæããç°ãªãã·ãŒã³ã®æ§æããªããžã§ã¯ãã®çžäºäœçšãã·ãã¥ã¬ãŒããè€éãªã·ãŒã³ã®ç解ã«é«ãå¹æãçºæ®ã |
mixup |
float |
0.0 |
0.0 - 1.0 |
2ã€ã®ç»åãšãã®ã©ãã«ããã¬ã³ãããåæç»åãäœæããŸããã©ãã«ãã€ãºãèŠèŠçãªã°ãã€ããå°å ¥ããããšã§ãã¢ãã«ã®æ±åèœåãé«ããã |
copy_paste |
float |
0.0 |
0.0 - 1.0 |
ãªããžã§ã¯ãã®ã€ã³ã¹ã¿ã³ã¹ãå¢ããããããªããžã§ã¯ãã®ãªã¯ã«ãŒãžã§ã³ãåŠç¿ãããããã®ã«äŸ¿å©ã§ããã»ã°ã¡ã³ããŒã·ã§ã³ã©ãã«ãå¿ èŠã§ãã |
copy_paste_mode |
str |
flip |
- | ã®ãªãã·ã§ã³ã®äžããã³ããŒããŒã¹ãå¢åŒ·æ³ãéžæããã"flip" , "mixup" ). |
auto_augment |
str |
randaugment |
- | äºåã«å®çŸ©ãããè£åŒ·ããªã·ãŒ(randaugment , autoaugment , augmix )ãèŠèŠçç¹åŸŽãå€æ§åããããšã§åé¡ã¿ã¹ã¯ãæé©åããã |
erasing |
float |
0.4 |
0.0 - 0.9 |
åé¡ãã¬ãŒãã³ã°äžã«ç»åã®äžéšãã©ã³ãã ã«æ¶å»ããã¢ãã«ãèªèã®ããã«ããŸãç®ç«ããªãç¹åŸŽã«éäžããããä¿ãã |
crop_fraction |
float |
1.0 |
0.1 - 1.0 |
äžå¿ã®ç¹åŸŽã匷調ãããªããžã§ã¯ãã®ã¹ã±ãŒã«ã«é©å¿ããèæ¯ã®ä¹±ãã軜æžããããã«ãåé¡ç»åããã®ãµã€ãºã®ã»ãã®äžéšã«åãåããŸãã |
ãããã®èšå®ã¯ãããŒã¿ã»ãããšæå ã®ã¿ã¹ã¯ã®ç¹å®ã®èŠä»¶ãæºããããã«èª¿æŽããããšãã§ããŸããç°ãªãå€ã§å®éšããããšã§ãæè¯ã®ã¢ãã«æ§èœã«ã€ãªããæé©ãªãªãŒã°ã¡ã³ããŒã·ã§ã³æŠç¥ãèŠã€ããããšãã§ããŸãã
ãã®ã³ã°ããã§ãã¯ãã€ã³ããããããèšå®
ãã®ã³ã°ããã§ãã¯ãã€ã³ããããããããã¡ã€ã«ç®¡çã¯ãYOLO ã¢ãã«ããã¬ãŒãã³ã°ããéã«éèŠãªèæ ®äºé ã§ããã
- ãã®ã³ã°ïŒã¢ãã«ã®é²æã远跡ããåé¡ãçºçããå Žåã«èšºæããããã«ããã¬ãŒãã³ã°äžã«ããŸããŸãªã¡ããªã¯ã¹ãçµ±èšæ å ±ããã°ã«èšé²ããŠãããšåœ¹ã«ç«ã€ããšãå€ããããã¯ãTensorBoardã®ãããªãã®ã³ã°ã©ã€ãã©ãªã䜿çšãããããã¡ã€ã«ã«ãã°ã¡ãã»ãŒãžãæžã蟌ãããšã§è¡ãããšãã§ããŸãã
- ãã§ãã¯ãã€ã³ããã¬ãŒãã³ã°äžãäžå®ééã§ã¢ãã«ã®ãã§ãã¯ãã€ã³ããä¿åããããšã¯è¯ãç¿æ £ã§ããããã«ããããã¬ãŒãã³ã°ããã»ã¹ãäžæãããå Žåããç°ãªããã¬ãŒãã³ã°èšå®ãè©Šãããå Žåã«ã以åã®ãã€ã³ããããã¬ãŒãã³ã°ãåéããããšãã§ããŸãã
- ããããããïŒã¢ãã«ã®ããã©ãŒãã³ã¹ãšãã¬ãŒãã³ã°ã®é²æãèŠèŠåããããšã¯ãã¢ãã«ãã©ã®ããã«åäœããŠããããç解ããæœåšçãªåé¡ãç¹å®ããã®ã«åœ¹ç«ã¡ãŸããããã¯ãmatplotlibã®ãããªããããã©ã€ãã©ãªã䜿çšããããTensorBoardã®ãããªãã®ã³ã°ã©ã€ãã©ãªã䜿çšããŠãããããçæããããšã§è¡ãããšãã§ããŸãã
- ãã¡ã€ã«ã®ç®¡çïŒã¢ãã«ã®ãã§ãã¯ãã€ã³ãããã°ãã¡ã€ã«ããããããªã©ããã¬ãŒãã³ã°ããã»ã¹äžã«çæãããæ§ã ãªãã¡ã€ã«ã管çããããšã¯å°é£ã§ãããããã®ãã¡ã€ã«ã远跡ããå¿ èŠã«å¿ããŠç°¡åã«ã¢ã¯ã»ã¹ããŠåæã§ããããã«ãæ確ã§æŽçããããã¡ã€ã«æ§é ãæã€ããšãéèŠã§ãã
å¹æçãªãã®ã³ã°ããã§ãã¯ãã€ã³ããããããããã¡ã€ã«ç®¡çã«ãããã¢ãã«ã®é²è¡ç¶æ³ãææ¡ãããããã°ããã¬ãŒãã³ã°ããã»ã¹ã®æé©åã容æã«ããããšãã§ããŸãã
è°è« | ããã©ã«ã | 説æ |
---|---|---|
project |
'runs' |
ãã¬ãŒãã³ã°å®è¡ãä¿åããã«ãŒããã£ã¬ã¯ããªãæå®ããŸããåã©ã³ã¯ãã®ãã£ã¬ã¯ããªå ã®åå¥ã®ãµããã£ã¬ã¯ããªã«ä¿åãããŸãã |
name |
'exp' |
å®éšåãå®çŸ©ãããæå®ããªãå ŽåãYOLO ã¯å®è¡ããšã«ãã®ååãèªåçã«ã€ã³ã¯ãªã¡ã³ãããã exp , exp2 ãªã©ã以åã®å®éšãäžæžãããªãããã«ããã |
exist_ok |
False |
åãååã®å®éšãã£ã¬ã¯ããªãæ¢ã«ååšããå Žåãäžæžããããã©ããã決å®ããŸããããã True ã¯äžæžããèš±å¯ããã False ãããé²ãã |
plots |
False |
ãã¬ãŒãã³ã°ãããããšæ€èšŒããããã®çæãšä¿åãå¶åŸ¡ããŸããèšå®é
ç® True æ倱æ²ç·ãªã©ã®ãããããäœæããã 粟床-ãªã³ãŒã« æ²ç·ãããã³ãµã³ãã«äºæž¬ãæéã®çµéãšãšãã«ã¢ãã«ã®ããã©ãŒãã³ã¹ãèŠèŠçã«è¿œè·¡ããã®ã«äŸ¿å©ã§ãã |
save |
False |
ãã¬ãŒãã³ã°ã®ãã§ãã¯ãã€ã³ããšæçµçãªã¢ãã«ã®éã¿ã®ä¿åãæå¹ã«ããŸãã以äžã®ããã«èšå®ããŸãã True ã䜿çšããŠã¢ãã«ã®ç¶æ
ãå®æçã«ä¿åãããããã®ãã§ãã¯ãã€ã³ããããã¬ãŒãã³ã°ãåéããããã¢ãã«ããããã€ãããããããšãã§ããŸãã |
ããããã質å
ãã¬ãŒãã³ã°äžã«YOLO ã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããã«ã¯ïŒ
YOLO ã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããã«ã¯ãããããµã€ãºãåŠç¿çãã¢ã¡ã³ã¿ã ããŠã§ã€ãæžè¡°ãªã©ã®ãã€ããŒãã©ã¡ãŒã¿ã調æŽããå¿ èŠããããå¢åŒ·èšå®ã®èª¿æŽãé©åãªãªããã£ãã€ã¶ã®éžæãæ©æåæ¢ãæ··å粟床ãªã©ã®ãã¯ããã¯ã®æ¡çšã圹ç«ã¡ãŸãããã¬ãŒãã³ã°èšå®ã®è©³çŽ°ãªã¬ã€ãã³ã¹ã«ã€ããŠã¯ããã¬ãŒãã³ã°ã¬ã€ããåç §ããŠãã ããã
YOLO ã¢ãã«ã®ç²ŸåºŠãé«ããããã«èæ ®ãã¹ãéèŠãªãã€ããŒãã©ã¡ãŒã¿ã¯äœãïŒ
YOLO ã¢ãã«ã®ç²ŸåºŠã«åœ±é¿ããäž»ãªãã€ããŒãã©ã¡ãŒã¿ã«ã¯ä»¥äžã®ãã®ãããïŒ
- ããããµã€ãº
batch
):ããããµã€ãºã倧ããããã°ãã¬ãŒãã³ã°ã¯å®å®ããããããå€ãã®ã¡ã¢ãªãå¿ èŠãšããå¯èœæ§ãããã - åŠç¿ç
lr0
):ãŠã§ã€ãã®æŽæ°ã®ã¹ããããµã€ãºãå¶åŸ¡ãããã¬ãŒããå°ãããããšåŸ®èª¿æŽãå¯èœã«ãªãããåæãé ããªãã - ã¢ã¡ã³ã¿ã (
momentum
):åŸé ãã¯ãã«ãæ£ããæ¹åã«å éãããæ¯åãåãããã - ç»åãµã€ãº
imgsz
):ç»åãµã€ãºã倧ããããã°ç²ŸåºŠã¯åäžããããèšç®è² è·ã¯å¢å€§ããã
ããªãã®ããŒã¿ã»ãããšããŒããŠã§ã¢ã®èœåã«åºã¥ããŠãããã®å€ã調æŽããŠãã ããã詳ããã¯Train Settingsã»ã¯ã·ã§ã³ãã芧ãã ããã
YOLO ã¢ãã«ããã¬ãŒãã³ã°ããéã®åŠç¿çã¯ã©ã®ããã«èšå®ããã®ã§ããïŒ
åŠç¿ç(lr0
)ã¯æé©åã«ãšã£ãŠæ¥µããŠéèŠã§ãããäžè¬çãªåºçºç¹ã¯ 0.01
SGDãŸã㯠0.001
ã¢ãã ã®ããã«ãã¬ãŒãã³ã°ã®ææšãã¢ãã¿ãŒããå¿
èŠã«å¿ããŠèª¿æŽããããšãäžå¯æ¬ ã§ããã³ãµã€ã³åŠç¿çã¹ã±ãžã¥ãŒã©(cos_lr
)ããŠã©ãŒã ã¢ããã»ãã¯ããã¯(warmup_epochs
, warmup_momentum
)ã䜿çšããŠããã¬ãŒãã³ã°äžã«åçã«ã¬ãŒããå€æŽããããšãã§ããŸãã詳现㯠ééã¬ã€ã.
YOLO ã¢ãã«ã®ããã©ã«ãã®æšè«èšå®ã¯ïŒ
ããã©ã«ãã®æšè«èšå®ã¯ä»¥äžã®éãïŒ
- ä¿¡é Œãããå€
conf=0.25
):æ€åºã®æå°ä¿¡é ŒåºŠã - IoUãããå€(
iou=0.7
):ãã³ããã·ãã ãµãã¬ãã·ã§ã³ïŒNMSïŒçšã - ç»åãµã€ãº
imgsz=640
):æšè«åã«å ¥åç»åã®ãªãµã€ãºãè¡ãã - ããã€ã¹
device=None
):CPU ããŸãã¯GPU ã
å æ¬çãªæŠèŠã«ã€ããŠã¯ãPredict Settingsã»ã¯ã·ã§ã³ããã³Predict Guideãã芧ãã ããã
YOLO ããªãããã¯ã¹ãã»ãã¬ã·ãžã§ã³ã»ãã¬ãŒãã³ã°ã䜿ãã¹ããªã®ãïŒ
ããã¯ã¹ãã»ãã¬ã·ãžã§ã³ã»ãã¬ãŒãã³ã° amp=True
ãŸããFP16ãšFP32ã®äž¡æ¹ã®å©ç¹ã掻çšããããšã§ãã¡ã¢ãªäœ¿çšéãåæžãããã¬ãŒãã³ã°ãé«éåããããšãã§ããŸããããã¯ãæ··å粟床ããã€ãã£ãã«ãµããŒãããææ°ã®GPUã«ãšã£ãŠæçã§ãããããå€ãã®ã¢ãã«ãã¡ã¢ãªã«åããããšãã§ãã粟床ã倧ããæãªãããšãªããããé«éãªèšç®ãå¯èœã«ãªããŸããããã«ã€ããŠã¯ ééã¬ã€ã.