Skip to content

Model Export with Ultralytics YOLO

Ultralytics YOLO ecosystem and integrations

Introduction

The ultimate goal of training a model is to deploy it for real-world applications. Export mode in Ultralytics YOLO11 offers a versatile range of options for exporting your trained model to different formats, making it deployable across various platforms and devices. This comprehensive guide aims to walk you through the nuances of model exporting, showcasing how to achieve maximum compatibility and performance.



Watch: How To Export Custom Trained Ultralytics YOLO Model and Run Live Inference on Webcam.

Why Choose YOLO11's Export Mode?

  • Versatility: Export to multiple formats including ONNX, TensorRT, CoreML, and more.
  • Performance: Gain up to 5x GPU speedup with TensorRT and 3x CPU speedup with ONNX or OpenVINO.
  • Compatibility: Make your model universally deployable across numerous hardware and software environments.
  • Ease of Use: Simple CLI and Python API for quick and straightforward model exporting.

Key Features of Export Mode

Here are some of the standout functionalities:

  • One-Click Export: Simple commands for exporting to different formats.
  • Batch Export: Export batched-inference capable models.
  • Optimized Inference: Exported models are optimized for quicker inference times.
  • Tutorial Videos: In-depth guides and tutorials for a smooth exporting experience.

Tip

Usage Examples

Export a YOLO11n model to a different format like ONNX or TensorRT. See the Arguments section below for a full list of export arguments.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Arguments

This table details the configurations and options available for exporting YOLO models to different formats. These settings are critical for optimizing the exported model's performance, size, and compatibility across various platforms and environments. Proper configuration ensures that the model is ready for deployment in the intended application with optimal efficiency.

ArgumentTypeDefaultDescription
formatstr'torchscript'Target format for the exported model, such as 'onnx', 'torchscript', 'tensorflow', or others, defining compatibility with various deployment environments.
imgszint or tuple640Desired image size for the model input. Can be an integer for square images or a tuple (height, width) for specific dimensions.
kerasboolFalseEnables export to Keras format for TensorFlow SavedModel, providing compatibility with TensorFlow serving and APIs.
optimizeboolFalseApplies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance.
halfboolFalseEnables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware.
int8boolFalseActivates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices.
dynamicboolFalseAllows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions.
simplifyboolTrueSimplifies the model graph for ONNX exports with onnxslim, potentially improving performance and compatibility.
opsetintNoneSpecifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version.
workspacefloat4.0Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance.
nmsboolFalseAdds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing.
batchint1Specifies export model batch inference size or the max number of images the exported model will process concurrently in predict mode.
devicestrNoneSpecifies the device for exporting: GPU (device=0), CPU (device=cpu), MPS for Apple silicon (device=mps) or DLA for NVIDIA Jetson (device=dla:0 or device=dla:1).

Adjusting these parameters allows for customization of the export process to fit specific requirements, such as deployment environment, hardware constraints, and performance targets. Selecting the appropriate format and settings is essential for achieving the best balance between model size, speed, and accuracy.

Export Formats

Available YOLO11 export formats are in the table below. You can export to any format using the format argument, i.e. format='onnx' or format='engine'. You can predict or validate directly on exported models, i.e. yolo predict model=yolo11n.onnx. Usage examples are shown for your model after export completes.

Formatformat ArgumentModelMetadataArguments
PyTorch-yolo11n.pt-
TorchScripttorchscriptyolo11n.torchscriptimgsz, optimize, batch
ONNXonnxyolo11n.onnximgsz, half, dynamic, simplify, opset, batch
OpenVINOopenvinoyolo11n_openvino_model/imgsz, half, int8, batch
TensorRTengineyolo11n.engineimgsz, half, dynamic, simplify, workspace, int8, batch
CoreMLcoremlyolo11n.mlpackageimgsz, half, int8, nms, batch
TF SavedModelsaved_modelyolo11n_saved_model/imgsz, keras, int8, batch
TF GraphDefpbyolo11n.pbimgsz, batch
TF Litetfliteyolo11n.tfliteimgsz, half, int8, batch
TF Edge TPUedgetpuyolo11n_edgetpu.tfliteimgsz
TF.jstfjsyolo11n_web_model/imgsz, half, int8, batch
PaddlePaddlepaddleyolo11n_paddle_model/imgsz, batch
MNNmnnyolo11n.mnnimgsz, batch, int8, half
NCNNncnnyolo11n_ncnn_model/imgsz, half, batch
IMX500imxyolo11n_imx_model/imgsz, int8

FAQ

How do I export a YOLO11 model to ONNX format?

Exporting a YOLO11 model to ONNX format is straightforward with Ultralytics. It provides both Python and CLI methods for exporting models.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

For more details on the process, including advanced options like handling different input sizes, refer to the ONNX section.

What are the benefits of using TensorRT for model export?

Using TensorRT for model export offers significant performance improvements. YOLO11 models exported to TensorRT can achieve up to a 5x GPU speedup, making it ideal for real-time inference applications.

  • Versatility: Optimize models for a specific hardware setup.
  • Speed: Achieve faster inference through advanced optimizations.
  • Compatibility: Integrate smoothly with NVIDIA hardware.

To learn more about integrating TensorRT, see the TensorRT integration guide.

How do I enable INT8 quantization when exporting my YOLO11 model?

INT8 quantization is an excellent way to compress the model and speed up inference, especially on edge devices. Here's how you can enable INT8 quantization:

Example

from ultralytics import YOLO

model = YOLO("yolo11n.pt")  # Load a model
model.export(format="engine", int8=True)
yolo export model=yolo11n.pt format=engine int8=True   # export TensorRT model with INT8 quantization

INT8 quantization can be applied to various formats, such as TensorRT and CoreML. More details can be found in the Export section.

Why is dynamic input size important when exporting models?

Dynamic input size allows the exported model to handle varying image dimensions, providing flexibility and optimizing processing efficiency for different use cases. When exporting to formats like ONNX or TensorRT, enabling dynamic input size ensures that the model can adapt to different input shapes seamlessly.

To enable this feature, use the dynamic=True flag during export:

Example

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
model.export(format="onnx", dynamic=True)
yolo export model=yolo11n.pt format=onnx dynamic=True

For additional context, refer to the dynamic input size configuration.

What are the key export arguments to consider for optimizing model performance?

Understanding and configuring export arguments is crucial for optimizing model performance:

  • format: The target format for the exported model (e.g., onnx, torchscript, tensorflow).
  • imgsz: Desired image size for the model input (e.g., 640 or (height, width)).
  • half: Enables FP16 quantization, reducing model size and potentially speeding up inference.
  • optimize: Applies specific optimizations for mobile or constrained environments.
  • int8: Enables INT8 quantization, highly beneficial for edge deployments.

For a detailed list and explanations of all the export arguments, visit the Export Arguments section.

📅 Created 1 year ago ✏️ Updated 26 days ago

Comments