Перейти к содержимому

Ultralytics YOLO11

Обзор

YOLO11 is the latest iteration in the Ultralytics YOLO series of real-time object detectors, redefining what's possible with cutting-edge accuracy, speed, and efficiency. Building upon the impressive advancements of previous YOLO versions, YOLO11 introduces significant improvements in architecture and training methods, making it a versatile choice for a wide range of computer vision tasks.

Ultralytics YOLO11 Comparison Plots



Смотри: How to Use Ultralytics YOLO11 for Object Detection and Tracking | How to Benchmark | YOLO11 RELEASED🚀

Основные характеристики

  • Enhanced Feature Extraction: YOLO11 employs an improved backbone and neck architecture, which enhances feature extraction capabilities for more precise object detection and complex task performance.
  • Optimized for Efficiency and Speed: YOLO11 introduces refined architectural designs and optimized training pipelines, delivering faster processing speeds and maintaining an optimal balance between accuracy and performance.
  • Greater Accuracy with Fewer Parameters: With advancements in model design, YOLO11m achieves a higher mean Average Precision (mAP) on the COCO dataset while using 22% fewer parameters than YOLOv8m, making it computationally efficient without compromising accuracy.
  • Adaptability Across Environments: YOLO11 can be seamlessly deployed across various environments, including edge devices, cloud platforms, and systems supporting NVIDIA GPUs, ensuring maximum flexibility.
  • Broad Range of Supported Tasks: Whether it's object detection, instance segmentation, image classification, pose estimation, or oriented object detection (OBB), YOLO11 is designed to cater to a diverse set of computer vision challenges.

Поддерживаемые задачи и режимы

YOLO11 builds upon the versatile model range introduced in YOLOv8, offering enhanced support across various computer vision tasks:

Модель Имена файлов Задание Заключение Валидация Тренировка Экспорт
YOLO11 yolo11n.pt yolo11s.pt yolo11m.pt yolo11l.pt yolo11x.pt Обнаружение
YOLO11-seg yolo11n-seg.pt yolo11s-seg.pt yolo11m-seg.pt yolo11l-seg.pt yolo11x-seg.pt Сегментация экземпляров
YOLO11-pose yolo11n-pose.pt yolo11s-pose.pt yolo11m-pose.pt yolo11l-pose.pt yolo11x-pose.pt Поза/ключи
YOLO11-obb yolo11n-obb.pt yolo11s-obb.pt yolo11m-obb.pt yolo11l-obb.pt yolo11x-obb.pt Ориентированное обнаружение
YOLO11-cls yolo11n-cls.pt yolo11s-cls.pt yolo11m-cls.pt yolo11l-cls.pt yolo11x-cls.pt Классификация

This table provides an overview of the YOLO11 model variants, showcasing their applicability in specific tasks and compatibility with operational modes such as Inference, Validation, Training, and Export. This flexibility makes YOLO11 suitable for a wide range of applications in computer vision, from real-time detection to complex segmentation tasks.

Показатели производительности

Производительность

Примеры использования этих моделей, обученных на COCO, см. в Detection Docs, где приведены 80 предварительно обученных классов.

Модель Размер
(пикселей)
mAPval
50-95
Скорость
CPU ONNX
(мс)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5
YOLO11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5
YOLO11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0
YOLO11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9
YOLO11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9

Примеры использования этих моделей, обученных на COCO, см. в Segmentation Docs, где приведены 80 предварительно обученных классов.

Модель Размер
(пикселей)
mAPbox
50-95
mAPmask
50-95
Скорость
CPU ONNX
(мс)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-seg 640 38.9 32.0 65.9 ± 1.1 1.8 ± 0.0 2.9 10.4
YOLO11s-seg 640 46.6 37.8 117.6 ± 4.9 2.9 ± 0.0 10.1 35.5
YOLO11m-seg 640 51.5 41.5 281.6 ± 1.2 6.3 ± 0.1 22.4 123.3
YOLO11l-seg 640 53.4 42.9 344.2 ± 3.2 7.8 ± 0.2 27.6 142.2
YOLO11x-seg 640 54.7 43.8 664.5 ± 3.2 15.8 ± 0.7 62.1 319.0

Примеры использования этих моделей, обученных на ImageNet и включающих 1000 предварительно обученных классов, смотри в Classification Docs.

Модель Размер
(пикселей)
acc
top1
Акк
топ5
Скорость
CPU ONNX
(мс)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B) при 640
YOLO11n-cls 224 70.0 89.4 5.0 ± 0.3 1.1 ± 0.0 1.6 3.3
YOLO11s-cls 224 75.4 92.7 7.9 ± 0.2 1.3 ± 0.0 5.5 12.1
YOLO11m-cls 224 77.3 93.9 17.2 ± 0.4 2.0 ± 0.0 10.4 39.3
YOLO11l-cls 224 78.3 94.3 23.2 ± 0.3 2.8 ± 0.0 12.9 49.4
YOLO11x-cls 224 79.5 94.9 41.4 ± 0.9 3.8 ± 0.0 28.4 110.4

Примеры использования этих моделей, обученных на COCO, см. в Pose Estimation Docs, где приводится 1 предварительно обученный класс - "человек".

Модель Размер
(пикселей)
mAPpose
50-95
mAPpose
50
Скорость
CPU ONNX
(мс)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-pose 640 50.0 81.0 52.4 ± 0.5 1.7 ± 0.0 2.9 7.6
YOLO11s-pose 640 58.9 86.3 90.5 ± 0.6 2.6 ± 0.0 9.9 23.2
YOLO11m-pose 640 64.9 89.4 187.3 ± 0.8 4.9 ± 0.1 20.9 71.7
YOLO11l-pose 640 66.1 89.9 247.7 ± 1.1 6.4 ± 0.1 26.2 90.7
YOLO11x-pose 640 69.5 91.1 488.0 ± 13.9 12.1 ± 0.2 58.8 203.3

Примеры использования этих моделей, обученных на DOTAv1 и включающих 15 предварительно обученных классов, смотри в Oriented Detection Docs.

Модель Размер
(пикселей)
mAPtest
50
Скорость
CPU ONNX
(мс)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-obb 1024 78.4 117.6 ± 0.8 4.4 ± 0.0 2.7 17.2
YOLO11s-obb 1024 79.5 219.4 ± 4.0 5.1 ± 0.0 9.7 57.5
YOLO11m-obb 1024 80.9 562.8 ± 2.9 10.1 ± 0.4 20.9 183.5
YOLO11l-obb 1024 81.0 712.5 ± 5.0 13.5 ± 0.6 26.2 232.0
YOLO11x-obb 1024 81.3 1408.6 ± 7.7 28.6 ± 1.0 58.8 520.2

Примеры использования

This section provides simple YOLO11 training and inference examples. For full documentation on these and other modes, see the Predict, Train, Val, and Export docs pages.

Note that the example below is for YOLO11 Detect models for object detection. For additional supported tasks, see the Segment, Classify, OBB, and Pose docs.

Пример

PyTorch pretrained *.pt модели, а также конфигурации *.yaml файлы могут быть переданы в YOLO() class to create a model instance in Python:

from ultralytics import YOLO

# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

# Run inference with the YOLO11n model on the 'bus.jpg' image
results = model("path/to/bus.jpg")

CLI Для непосредственного запуска моделей доступны команды:

# Load a COCO-pretrained YOLO11n model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolo11n.pt data=coco8.yaml epochs=100 imgsz=640

# Load a COCO-pretrained YOLO11n model and run inference on the 'bus.jpg' image
yolo predict model=yolo11n.pt source=path/to/bus.jpg

Цитаты и благодарности

If you use YOLO11 or any other software from this repository in your work, please cite it using the following format:

@software{yolo11_ultralytics,
  author = {Glenn Jocher and Jing Qiu},
  title = {Ultralytics YOLO11},
  version = {11.0.0},
  year = {2024},
  url = {https://github.com/ultralytics/ultralytics},
  orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
  license = {AGPL-3.0}
}

Please note that the DOI is pending and will be added to the citation once it is available. YOLO11 models are provided under AGPL-3.0 and Enterprise licenses.

ВОПРОСЫ И ОТВЕТЫ

What are the key improvements in Ultralytics YOLO11 compared to previous versions?

Ultralytics YOLO11 introduces several significant advancements over its predecessors. Key improvements include:

  • Enhanced Feature Extraction: YOLO11 employs an improved backbone and neck architecture, enhancing feature extraction capabilities for more precise object detection.
  • Optimized Efficiency and Speed: Refined architectural designs and optimized training pipelines deliver faster processing speeds while maintaining a balance between accuracy and performance.
  • Greater Accuracy with Fewer Parameters: YOLO11m achieves higher mean Average Precision (mAP) on the COCO dataset with 22% fewer parameters than YOLOv8m, making it computationally efficient without compromising accuracy.
  • Adaptability Across Environments: YOLO11 can be deployed across various environments, including edge devices, cloud platforms, and systems supporting NVIDIA GPUs.
  • Broad Range of Supported Tasks: YOLO11 supports diverse computer vision tasks such as object detection, instance segmentation, image classification, pose estimation, and oriented object detection (OBB).

How do I train a YOLO11 model for object detection?

Training a YOLO11 model for object detection can be done using Python or CLI commands. Below are examples for both methods:

Пример

from ultralytics import YOLO

# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Load a COCO-pretrained YOLO11n model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolo11n.pt data=coco8.yaml epochs=100 imgsz=640

For more detailed instructions, refer to the Train documentation.

What tasks can YOLO11 models perform?

YOLO11 models are versatile and support a wide range of computer vision tasks, including:

  • Object Detection: Identifying and locating objects within an image.
  • Instance Segmentation: Detecting objects and delineating their boundaries.
  • Image Classification: Categorizing images into predefined classes.
  • Pose Estimation: Detecting and tracking keypoints on human bodies.
  • Oriented Object Detection (OBB): Detecting objects with rotation for higher precision.

For more information on each task, see the Detection, Instance Segmentation, Classification, Pose Estimation, and Oriented Detection documentation.

How does YOLO11 achieve greater accuracy with fewer parameters?

YOLO11 achieves greater accuracy with fewer parameters through advancements in model design and optimization techniques. The improved architecture allows for efficient feature extraction and processing, resulting in higher mean Average Precision (mAP) on datasets like COCO while using 22% fewer parameters than YOLOv8m. This makes YOLO11 computationally efficient without compromising on accuracy, making it suitable for deployment on resource-constrained devices.

Can YOLO11 be deployed on edge devices?

Yes, YOLO11 is designed for adaptability across various environments, including edge devices. Its optimized architecture and efficient processing capabilities make it suitable for deployment on edge devices, cloud platforms, and systems supporting NVIDIA GPUs. This flexibility ensures that YOLO11 can be used in diverse applications, from real-time detection on mobile devices to complex segmentation tasks in cloud environments. For more details on deployment options, refer to the Export documentation.


📅 Created 14 days ago ✏️ Updated 9 days ago

Комментарии