Bộ dữ liệu COCO128
Giới thiệu
Ultralytics COCO128 là một tập dữ liệu phát hiện đối tượng nhỏ nhưng đa năng bao gồm 128 hình ảnh đầu tiên của tập COCO train 2017. Tập dữ liệu này lý tưởng để thử nghiệm và gỡ lỗi các mô hình phát hiện đối tượng hoặc để thử nghiệm các phương pháp phát hiện mới. Với 128 hình ảnh, nó đủ nhỏ để dễ quản lý, nhưng đủ đa dạng để kiểm tra các đường ống đào tạo để tìm lỗi và hoạt động như một kiểm tra hợp lý trước khi đào tạo các tập dữ liệu lớn hơn.
Đồng hồ: Ultralytics Tổng quan về Bộ dữ liệu COCO
Bộ dữ liệu này được dự định sử dụng với Ultralytics HUB và YOLO11 .
Bộ dữ liệu YAML
Tệp YAML (Yet Another Markup Language) được sử dụng để xác định cấu hình tập dữ liệu. Tệp này chứa thông tin về đường dẫn, lớp và các thông tin liên quan khác của tập dữ liệu. Trong trường hợp của tập dữ liệu COCO128, coco128.yaml
tập tin được duy trì tại https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128.yaml.
ultralytics /cfg/datasets/coco128.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
Cách sử dụng
Để đào tạo mô hình YOLO11n trên tập dữ liệu COCO128 trong 100 kỷ nguyên với kích thước hình ảnh là 640, bạn có thể sử dụng các đoạn mã sau. Để biết danh sách đầy đủ các đối số khả dụng, hãy tham khảo trang Đào tạo mô hình.
Ví dụ về tàu hỏa
Hình ảnh mẫu và chú thích
Sau đây là một số ví dụ về hình ảnh từ tập dữ liệu COCO128, cùng với chú thích tương ứng:
- Mosaiced Image : Hình ảnh này minh họa một lô đào tạo bao gồm các hình ảnh tập dữ liệu mosaic. Mosaicing là một kỹ thuật được sử dụng trong quá trình đào tạo kết hợp nhiều hình ảnh thành một hình ảnh duy nhất để tăng tính đa dạng của các đối tượng và cảnh trong mỗi lô đào tạo. Điều này giúp cải thiện khả năng khái quát hóa của mô hình đối với các kích thước đối tượng, tỷ lệ khung hình và bối cảnh khác nhau.
Ví dụ này cho thấy sự đa dạng và phức tạp của các hình ảnh trong tập dữ liệu COCO128 và lợi ích của việc sử dụng khảm trong quá trình đào tạo.
Trích dẫn và Lời cảm ơn
Nếu bạn sử dụng bộ dữ liệu COCO trong công tác nghiên cứu hoặc phát triển của mình, vui lòng trích dẫn bài báo sau:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Chúng tôi muốn cảm ơn COCO Consortium đã tạo ra và duy trì nguồn tài nguyên có giá trị này cho cộng đồng thị giác máy tính . Để biết thêm thông tin về tập dữ liệu COCO và những người tạo ra nó, hãy truy cập trang web tập dữ liệu COCO .
CÂU HỎI THƯỜNG GẶP
Cái gì là Ultralytics Bộ dữ liệu COCO128 được sử dụng để làm gì?
Các Ultralytics Bộ dữ liệu COCO128 là một tập hợp con nhỏ gọn chứa 128 hình ảnh đầu tiên từ bộ dữ liệu COCO train 2017. Nó chủ yếu được sử dụng để thử nghiệm và gỡ lỗi các mô hình phát hiện đối tượng , thử nghiệm các phương pháp phát hiện mới và xác thực các đường ống đào tạo trước khi mở rộng sang các bộ dữ liệu lớn hơn. Kích thước dễ quản lý của nó làm cho nó hoàn hảo cho các lần lặp lại nhanh trong khi vẫn cung cấp đủ tính đa dạng để trở thành một trường hợp thử nghiệm có ý nghĩa.
Làm thế nào để tôi đào tạo một YOLO11 mô hình sử dụng tập dữ liệu COCO128?
Để đào tạo một YOLO11 mô hình trên tập dữ liệu COCO128, bạn có thể sử dụng Python hoặc CLI lệnh. Đây là cách thực hiện:
from ultralytics import YOLO
# Load a pretrained model
model = YOLO("yolo11n.pt")
# Train the model
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
```
=== "CLI"
`bash
yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640
`
For more training options and parameters, refer to the [Training](../../modes/train.md) documentation.
### What are the benefits of using mosaic augmentation with COCO128?
Mosaic augmentation, as shown in the sample images, combines multiple training images into a single composite image. This technique offers several benefits when training with COCO128:
- Increases the variety of objects and contexts within each training batch
- Improves model generalization across different object sizes and aspect ratios
- Enhances detection performance for objects at various scales
- Maximizes the utility of a small dataset by creating more diverse training samples
This technique is particularly valuable for smaller datasets like COCO128, helping models learn more robust features from limited data.
### How does COCO128 compare to other COCO dataset variants?
COCO128 (128 images) sits between [COCO8](../detect/coco8.md) (8 images) and the full [COCO](../detect/coco.md) dataset (118K+ images) in terms of size:
- **COCO8**: Contains just 8 images (4 train, 4 val) - ideal for quick tests and debugging
- **COCO128**: Contains 128 images - balanced between size and diversity
- **Full COCO**: Contains 118K+ training images - comprehensive but resource-intensive
COCO128 provides a good middle ground, offering more diversity than COCO8 while remaining much more manageable than the full COCO dataset for experimentation and initial model development.
### Can I use COCO128 for tasks other than object detection?
While COCO128 is primarily designed for object detection, the dataset's annotations can be adapted for other computer vision tasks:
- **Instance segmentation**: Using the segmentation masks provided in the annotations
- **Keypoint detection**: For images containing people with keypoint annotations
- **Transfer learning**: As a starting point for fine-tuning models for custom tasks
For specialized tasks like [segmentation](../../tasks/segment.md), consider using purpose-built variants like [COCO8-seg](../segment/coco8-seg.md) which include the appropriate annotations.