Bỏ để qua phần nội dung

Tập dữ liệu COCO8-POSE

Giới thiệu

Ultralytics COCO8-Pose là một bộ dữ liệu phát hiện tư thế nhỏ nhưng linh hoạt bao gồm 8 hình ảnh đầu tiên của bộ COCO train 2017, 4 hình ảnh để đào tạo và 4 hình ảnh để xác nhận. Tập dữ liệu này lý tưởng để kiểm tra và gỡ lỗi các mô hình phát hiện đối tượng hoặc để thử nghiệm các phương pháp phát hiện mới. Với 8 hình ảnh, nó đủ nhỏ để dễ dàng quản lý, nhưng đủ đa dạng để kiểm tra các đường ống đào tạo để tìm lỗi và hoạt động như một kiểm tra tỉnh táo trước khi đào tạo các bộ dữ liệu lớn hơn.

Tập dữ liệu này được thiết kế để sử dụng với Ultralytics HUBYOLOv8.

Tập dữ liệu YAML

Tệp YAML (Yet Another Markup Language) được sử dụng để xác định cấu hình tập dữ liệu. Nó chứa thông tin về đường dẫn, lớp và thông tin liên quan khác của tập dữ liệu. Trong trường hợp tập dữ liệu COCO8-Pose, coco8-pose.yaml Tệp được duy trì tại https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-pose.yaml.

ultralytics/cfg/datasets/coco8-pose.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco8-pose  ← downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

# Classes
names:
  0: person

# Download script/URL (optional)
download: https://ultralytics.com/assets/coco8-pose.zip

Sử dụng

Để đào tạo một YOLOv8nMô hình -pose trên tập dữ liệu COCO8-Pose cho 100 kỷ nguyên với kích thước hình ảnh là 640, bạn có thể sử dụng các đoạn mã sau. Để biết danh sách đầy đủ các đối số có sẵn, hãy tham khảo trang Đào tạo mẫu.

Ví dụ về tàu hỏa

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco8-pose.yaml model=yolov8n.pt epochs=100 imgsz=640

Hình ảnh mẫu và chú thích

Dưới đây là một số ví dụ về hình ảnh từ tập dữ liệu COCO8-Pode, cùng với các chú thích tương ứng của chúng:

Hình ảnh mẫu tập dữ liệu

  • Hình ảnh khảm: Hình ảnh này thể hiện một lô đào tạo bao gồm các hình ảnh tập dữ liệu được khảm. Khảm là một kỹ thuật được sử dụng trong quá trình đào tạo kết hợp nhiều hình ảnh thành một hình ảnh duy nhất để tăng sự đa dạng của các đối tượng và cảnh trong mỗi đợt đào tạo. Điều này giúp cải thiện khả năng khái quát hóa mô hình cho các kích thước đối tượng, tỷ lệ khung hình và ngữ cảnh khác nhau.

Ví dụ này cho thấy sự đa dạng và phức tạp của hình ảnh trong bộ dữ liệu COCO8-Pose và lợi ích của việc sử dụng khảm trong quá trình đào tạo.

Trích dẫn và xác nhận

Nếu bạn sử dụng bộ dữ liệu COCO trong công việc nghiên cứu hoặc phát triển của mình, vui lòng trích dẫn bài báo sau:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Chúng tôi xin ghi nhận COCO Consortium đã tạo ra và duy trì nguồn tài nguyên quý giá này cho cộng đồng thị giác máy tính. Để biết thêm thông tin về bộ dữ liệu COCO và người tạo ra nó, hãy truy cập trang web tập dữ liệu COCO.



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (6), Laughing-q (1)

Ý kiến