انتقل إلى المحتوى

مرجع ل ultralytics/solutions/speed_estimation.py

ملاحظه

هذا الملف متاح في https://github.com/ultralytics/ultralytics/ نقطة / الرئيسية /ultralytics/الحلول/speed_estimation.py. إذا اكتشفت مشكلة ، فيرجى المساعدة في إصلاحها من خلال المساهمة في طلب 🛠️ سحب. شكرا لك 🙏!



ultralytics.solutions.speed_estimation.SpeedEstimator

فئة لتقدير سرعة الأجسام في دفق فيديو في الوقت الفعلي بناءً على مساراتها.

شفرة المصدر في ultralytics/solutions/speed_estimation.py
class SpeedEstimator:
    """A class to estimate the speed of objects in a real-time video stream based on their tracks."""

    def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10):
        """
        Initializes the SpeedEstimator with the given parameters.

        Args:
            names (dict): Dictionary of class names.
            reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
            view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
            line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
            region_thickness (int, optional): Thickness of the region lines. Defaults to 5.
            spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
        """
        # Visual & image information
        self.im0 = None
        self.annotator = None
        self.view_img = view_img

        # Region information
        self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
        self.region_thickness = region_thickness

        # Tracking information
        self.clss = None
        self.names = names
        self.boxes = None
        self.trk_ids = None
        self.trk_pts = None
        self.line_thickness = line_thickness
        self.trk_history = defaultdict(list)

        # Speed estimation information
        self.current_time = 0
        self.dist_data = {}
        self.trk_idslist = []
        self.spdl_dist_thresh = spdl_dist_thresh
        self.trk_previous_times = {}
        self.trk_previous_points = {}

        # Check if the environment supports imshow
        self.env_check = check_imshow(warn=True)

    def extract_tracks(self, tracks):
        """
        Extracts results from the provided tracking data.

        Args:
            tracks (list): List of tracks obtained from the object tracking process.
        """
        self.boxes = tracks[0].boxes.xyxy.cpu()
        self.clss = tracks[0].boxes.cls.cpu().tolist()
        self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()

    def store_track_info(self, track_id, box):
        """
        Stores track data.

        Args:
            track_id (int): Object track id.
            box (list): Object bounding box data.

        Returns:
            (list): Updated tracking history for the given track_id.
        """
        track = self.trk_history[track_id]
        bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
        track.append(bbox_center)

        if len(track) > 30:
            track.pop(0)

        self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
        return track

    def plot_box_and_track(self, track_id, box, cls, track):
        """
        Plots track and bounding box.

        Args:
            track_id (int): Object track id.
            box (list): Object bounding box data.
            cls (str): Object class name.
            track (list): Tracking history for drawing tracks path.
        """
        speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)]
        bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)

        self.annotator.box_label(box, speed_label, bbox_color)
        cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
        cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)

    def calculate_speed(self, trk_id, track):
        """
        Calculates the speed of an object.

        Args:
            trk_id (int): Object track id.
            track (list): Tracking history for drawing tracks path.
        """
        if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
            return
        if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh:
            direction = "known"
        elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh:
            direction = "known"
        else:
            direction = "unknown"

        if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
            self.trk_idslist.append(trk_id)

            time_difference = time() - self.trk_previous_times[trk_id]
            if time_difference > 0:
                dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1])
                speed = dist_difference / time_difference
                self.dist_data[trk_id] = speed

        self.trk_previous_times[trk_id] = time()
        self.trk_previous_points[trk_id] = track[-1]

    def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)):
        """
        Estimates the speed of objects based on tracking data.

        Args:
            im0 (ndarray): Image.
            tracks (list): List of tracks obtained from the object tracking process.
            region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0).

        Returns:
            (ndarray): The image with annotated boxes and tracks.
        """
        self.im0 = im0
        if tracks[0].boxes.id is None:
            if self.view_img and self.env_check:
                self.display_frames()
            return im0

        self.extract_tracks(tracks)
        self.annotator = Annotator(self.im0, line_width=self.line_thickness)
        self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness)

        for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
            track = self.store_track_info(trk_id, box)

            if trk_id not in self.trk_previous_times:
                self.trk_previous_times[trk_id] = 0

            self.plot_box_and_track(trk_id, box, cls, track)
            self.calculate_speed(trk_id, track)

        if self.view_img and self.env_check:
            self.display_frames()

        return im0

    def display_frames(self):
        """Displays the current frame."""
        cv2.imshow("Ultralytics Speed Estimation", self.im0)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            return

__init__(names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10)

يقوم بتهيئة SpeedEstimator بالمعلمات المعطاة.

البارامترات:

اسم نوع وصف افتراضي
names dict

قاموس أسماء الطبقات.

مطلوب
reg_pts list

قائمة نقاط المنطقة لتقدير السرعة. افتراضي إلى [(20، 400)، (1260، 400)].

None
view_img bool

ما إذا كان سيتم عرض الصورة مع التعليقات التوضيحية. الإعداد الافتراضي إلى خطأ.

False
line_thickness int

سماكة الخطوط لرسم المربعات والمسارات. افتراضي إلى 2.

2
region_thickness int

سماكة خطوط المنطقة. افتراضي إلى 5.

5
spdl_dist_thresh int

عتبة المسافة لحساب السرعة. افتراضي إلى 10.

10
شفرة المصدر في ultralytics/solutions/speed_estimation.py
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10):
    """
    Initializes the SpeedEstimator with the given parameters.

    Args:
        names (dict): Dictionary of class names.
        reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
        view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
        line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
        region_thickness (int, optional): Thickness of the region lines. Defaults to 5.
        spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
    """
    # Visual & image information
    self.im0 = None
    self.annotator = None
    self.view_img = view_img

    # Region information
    self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
    self.region_thickness = region_thickness

    # Tracking information
    self.clss = None
    self.names = names
    self.boxes = None
    self.trk_ids = None
    self.trk_pts = None
    self.line_thickness = line_thickness
    self.trk_history = defaultdict(list)

    # Speed estimation information
    self.current_time = 0
    self.dist_data = {}
    self.trk_idslist = []
    self.spdl_dist_thresh = spdl_dist_thresh
    self.trk_previous_times = {}
    self.trk_previous_points = {}

    # Check if the environment supports imshow
    self.env_check = check_imshow(warn=True)

calculate_speed(trk_id, track)

حساب سرعة الجسم.

البارامترات:

اسم نوع وصف افتراضي
trk_id int

معرّف مسار الكائن.

مطلوب
track list

سجل التتبع لرسم مسار المسارات.

مطلوب
شفرة المصدر في ultralytics/solutions/speed_estimation.py
def calculate_speed(self, trk_id, track):
    """
    Calculates the speed of an object.

    Args:
        trk_id (int): Object track id.
        track (list): Tracking history for drawing tracks path.
    """
    if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
        return
    if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh:
        direction = "known"
    elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh:
        direction = "known"
    else:
        direction = "unknown"

    if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
        self.trk_idslist.append(trk_id)

        time_difference = time() - self.trk_previous_times[trk_id]
        if time_difference > 0:
            dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1])
            speed = dist_difference / time_difference
            self.dist_data[trk_id] = speed

    self.trk_previous_times[trk_id] = time()
    self.trk_previous_points[trk_id] = track[-1]

display_frames()

يعرض الإطار الحالي.

شفرة المصدر في ultralytics/solutions/speed_estimation.py
def display_frames(self):
    """Displays the current frame."""
    cv2.imshow("Ultralytics Speed Estimation", self.im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        return

estimate_speed(im0, tracks, region_color=(255, 0, 0))

تقدير سرعة الأجسام بناءً على بيانات التتبع.

البارامترات:

اسم نوع وصف افتراضي
im0 ndarray

الصورة.

مطلوب
tracks list

قائمة المسارات التي تم الحصول عليها من عملية تتبع الكائن.

مطلوب
region_color tuple

لون لاستخدامه عند رسم المناطق. افتراضي إلى (255، 0، 0).

(255, 0, 0)

ارجاع:

نوع وصف
ndarray

الصورة ذات المربعات والمسارات المشروحة.

شفرة المصدر في ultralytics/solutions/speed_estimation.py
def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)):
    """
    Estimates the speed of objects based on tracking data.

    Args:
        im0 (ndarray): Image.
        tracks (list): List of tracks obtained from the object tracking process.
        region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0).

    Returns:
        (ndarray): The image with annotated boxes and tracks.
    """
    self.im0 = im0
    if tracks[0].boxes.id is None:
        if self.view_img and self.env_check:
            self.display_frames()
        return im0

    self.extract_tracks(tracks)
    self.annotator = Annotator(self.im0, line_width=self.line_thickness)
    self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness)

    for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
        track = self.store_track_info(trk_id, box)

        if trk_id not in self.trk_previous_times:
            self.trk_previous_times[trk_id] = 0

        self.plot_box_and_track(trk_id, box, cls, track)
        self.calculate_speed(trk_id, track)

    if self.view_img and self.env_check:
        self.display_frames()

    return im0

extract_tracks(tracks)

يستخرج النتائج من بيانات التتبع المتوفرة.

البارامترات:

اسم نوع وصف افتراضي
tracks list

قائمة المسارات التي تم الحصول عليها من عملية تتبع الكائن.

مطلوب
شفرة المصدر في ultralytics/solutions/speed_estimation.py
def extract_tracks(self, tracks):
    """
    Extracts results from the provided tracking data.

    Args:
        tracks (list): List of tracks obtained from the object tracking process.
    """
    self.boxes = tracks[0].boxes.xyxy.cpu()
    self.clss = tracks[0].boxes.cls.cpu().tolist()
    self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()

plot_box_and_track(track_id, box, cls, track)

رسم المسار والمربع المحدود.

البارامترات:

اسم نوع وصف افتراضي
track_id int

معرّف مسار الكائن.

مطلوب
box list

بيانات الصندوق المحيط بالكائن.

مطلوب
cls str

اسم فئة الكائن.

مطلوب
track list

سجل التتبع لرسم مسار المسارات.

مطلوب
شفرة المصدر في ultralytics/solutions/speed_estimation.py
def plot_box_and_track(self, track_id, box, cls, track):
    """
    Plots track and bounding box.

    Args:
        track_id (int): Object track id.
        box (list): Object bounding box data.
        cls (str): Object class name.
        track (list): Tracking history for drawing tracks path.
    """
    speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)]
    bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)

    self.annotator.box_label(box, speed_label, bbox_color)
    cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
    cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)

store_track_info(track_id, box)

تخزين بيانات المسار.

البارامترات:

اسم نوع وصف افتراضي
track_id int

معرّف مسار الكائن.

مطلوب
box list

بيانات الصندوق المحيط بالكائن.

مطلوب

ارجاع:

نوع وصف
list

تم تحديث سجل التتبع المحدَّث لـ track_id_id المحدد.

شفرة المصدر في ultralytics/solutions/speed_estimation.py
def store_track_info(self, track_id, box):
    """
    Stores track data.

    Args:
        track_id (int): Object track id.
        box (list): Object bounding box data.

    Returns:
        (list): Updated tracking history for the given track_id.
    """
    track = self.trk_history[track_id]
    bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
    track.append(bbox_center)

    if len(track) > 30:
        track.pop(0)

    self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
    return track





Created 2024-01-05, Updated 2024-06-02
Authors: glenn-jocher (2), Burhan-Q (1), AyushExel (1), RizwanMunawar (1)