انتقل إلى المحتوى

مرجع ل ultralytics/trackers/utils/gmc.py

ملاحظه

هذا الملف متاح في https://github.com/ultralytics/ultralytics/ نقطة / الرئيسية /ultralytics/ بتتبع / أدوات / gmc.py. إذا اكتشفت مشكلة ، فيرجى المساعدة في إصلاحها من خلال المساهمة في طلب 🛠️ سحب. شكرا لك 🙏!



ultralytics.trackers.utils.gmc.GMC

فئة تعويض الحركة المعمم (GMC) للتتبع واكتشاف الأشياء في إطارات الفيديو.

توفر هذه الفئة طرقا لتتبع الكائنات واكتشافها بناء على العديد من خوارزميات التتبع بما في ذلك ORB ، غربلة ، ECC ، وتدفق بصري متناثر. كما أنه يدعم تصغير حجم الإطارات لتحقيق الكفاءة الحسابية.

سمات:

اسم نوع وصف
method str

الطريقة المستخدمة للتتبع. تشمل الخيارات "الجرم السماوي" و "الغربلة" و "ecc" و "sparseOptFlow" و "لا شيء".

downscale int

عامل يمكن من خلاله تقليص حجم الإطارات للمعالجة.

prevFrame ndarray

يخزن الإطار السابق للتعقب.

prevKeyPoints list

يخزن النقاط الأساسية من الإطار السابق.

prevDescriptors ndarray

يخزن الواصفات من الإطار السابق.

initializedFirstFrame bool

ضع علامة للإشارة إلى ما إذا كان الإطار الأول قد تمت معالجته.

أساليب:

اسم وصف
__init__

تهيئة كائن GMC بالطريقة المحددة وعامل تصغير.

apply

يطبق الطريقة المختارة على إطار خام ويستخدم اختياريا قدمت الكشفات.

applyEcc

يطبق خوارزمية ECC على إطار خام.

applyFeatures

يطبق الأساليب المستندة إلى الميزات مثل ORB أو غربلة على إطار خام.

applySparseOptFlow

يطبق أسلوب التدفق البصري المتناثر على إطار خام.

شفرة المصدر في ultralytics/trackers/utils/gmc.py
class GMC:
    """
    Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.

    This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
    SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.

    Attributes:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Factor by which to downscale the frames for processing.
        prevFrame (np.ndarray): Stores the previous frame for tracking.
        prevKeyPoints (list): Stores the keypoints from the previous frame.
        prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
        initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.

    Methods:
        __init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
                                                              and downscale factor.
        apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
                                                 provided detections.
        applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
        applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
        applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
    """

    def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
        """
        Initialize a video tracker with specified parameters.

        Args:
            method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
            downscale (int): Downscale factor for processing frames.
        """
        super().__init__()

        self.method = method
        self.downscale = max(1, int(downscale))

        if self.method == "orb":
            self.detector = cv2.FastFeatureDetector_create(20)
            self.extractor = cv2.ORB_create()
            self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

        elif self.method == "sift":
            self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
            self.matcher = cv2.BFMatcher(cv2.NORM_L2)

        elif self.method == "ecc":
            number_of_iterations = 5000
            termination_eps = 1e-6
            self.warp_mode = cv2.MOTION_EUCLIDEAN
            self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

        elif self.method == "sparseOptFlow":
            self.feature_params = dict(
                maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
            )

        elif self.method in {"none", "None", None}:
            self.method = None
        else:
            raise ValueError(f"Error: Unknown GMC method:{method}")

        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

    def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply object detection on a raw frame using specified method.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        if self.method in {"orb", "sift"}:
            return self.applyFeatures(raw_frame, detections)
        elif self.method == "ecc":
            return self.applyEcc(raw_frame)
        elif self.method == "sparseOptFlow":
            return self.applySparseOptFlow(raw_frame)
        else:
            return np.eye(2, 3)

    def applyEcc(self, raw_frame: np.array) -> np.array:
        """
        Apply ECC algorithm to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3, dtype=np.float32)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Run the ECC algorithm. The results are stored in warp_matrix.
        # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
        try:
            (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
        except Exception as e:
            LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

        return H

    def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
        """
        Apply feature-based methods like ORB or SIFT to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.
            detections (list): List of detections to be used in the processing.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
            width = width // self.downscale
            height = height // self.downscale

        # Find the keypoints
        mask = np.zeros_like(frame)
        mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
        if detections is not None:
            for det in detections:
                tlbr = (det[:4] / self.downscale).astype(np.int_)
                mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

        keypoints = self.detector.detect(frame, mask)

        # Compute the descriptors
        keypoints, descriptors = self.extractor.compute(frame, keypoints)

        # Handle first frame
        if not self.initializedFirstFrame:
            # Initialize data
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            # Initialization done
            self.initializedFirstFrame = True

            return H

        # Match descriptors
        knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

        # Filter matches based on smallest spatial distance
        matches = []
        spatialDistances = []

        maxSpatialDistance = 0.25 * np.array([width, height])

        # Handle empty matches case
        if len(knnMatches) == 0:
            # Store to next iteration
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.prevDescriptors = copy.copy(descriptors)

            return H

        for m, n in knnMatches:
            if m.distance < 0.9 * n.distance:
                prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
                currKeyPointLocation = keypoints[m.trainIdx].pt

                spatialDistance = (
                    prevKeyPointLocation[0] - currKeyPointLocation[0],
                    prevKeyPointLocation[1] - currKeyPointLocation[1],
                )

                if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                    np.abs(spatialDistance[1]) < maxSpatialDistance[1]
                ):
                    spatialDistances.append(spatialDistance)
                    matches.append(m)

        meanSpatialDistances = np.mean(spatialDistances, 0)
        stdSpatialDistances = np.std(spatialDistances, 0)

        inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

        goodMatches = []
        prevPoints = []
        currPoints = []
        for i in range(len(matches)):
            if inliers[i, 0] and inliers[i, 1]:
                goodMatches.append(matches[i])
                prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
                currPoints.append(keypoints[matches[i].trainIdx].pt)

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Draw the keypoint matches on the output image
        # if False:
        #     import matplotlib.pyplot as plt
        #     matches_img = np.hstack((self.prevFrame, frame))
        #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
        #     W = self.prevFrame.shape[1]
        #     for m in goodMatches:
        #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
        #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
        #         curr_pt[0] += W
        #         color = np.random.randint(0, 255, 3)
        #         color = (int(color[0]), int(color[1]), int(color[2]))
        #
        #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
        #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
        #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
        #
        #     plt.figure()
        #     plt.imshow(matches_img)
        #     plt.show()

        # Find rigid matrix
        if prevPoints.shape[0] > 4:
            H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            # Handle downscale
            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
        """
        Apply Sparse Optical Flow method to a raw frame.

        Args:
            raw_frame (np.ndarray): The raw frame to be processed.

        Returns:
            (np.ndarray): Processed frame.

        Examples:
            >>> gmc = GMC()
            >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
            array([[1, 2, 3],
                   [4, 5, 6]])
        """
        height, width, _ = raw_frame.shape
        frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
        H = np.eye(2, 3)

        # Downscale image
        if self.downscale > 1.0:
            frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

        # Find the keypoints
        keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

        # Handle first frame
        if not self.initializedFirstFrame or self.prevKeyPoints is None:
            self.prevFrame = frame.copy()
            self.prevKeyPoints = copy.copy(keypoints)
            self.initializedFirstFrame = True
            return H

        # Find correspondences
        matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

        # Leave good correspondences only
        prevPoints = []
        currPoints = []

        for i in range(len(status)):
            if status[i]:
                prevPoints.append(self.prevKeyPoints[i])
                currPoints.append(matchedKeypoints[i])

        prevPoints = np.array(prevPoints)
        currPoints = np.array(currPoints)

        # Find rigid matrix
        if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
            H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

            if self.downscale > 1.0:
                H[0, 2] *= self.downscale
                H[1, 2] *= self.downscale
        else:
            LOGGER.warning("WARNING: not enough matching points")

        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)

        return H

    def reset_params(self) -> None:
        """Reset parameters."""
        self.prevFrame = None
        self.prevKeyPoints = None
        self.prevDescriptors = None
        self.initializedFirstFrame = False

__init__(method='sparseOptFlow', downscale=2)

تهيئة تعقب الفيديو مع المعلمات المحددة.

البارامترات:

اسم نوع وصف افتراضي
method str

الطريقة المستخدمة للتتبع. تشمل الخيارات "الجرم السماوي" و "الغربلة" و "ecc" و "sparseOptFlow" و "لا شيء".

'sparseOptFlow'
downscale int

عامل تصغير لمعالجة الإطارات.

2
شفرة المصدر في ultralytics/trackers/utils/gmc.py
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
    """
    Initialize a video tracker with specified parameters.

    Args:
        method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
        downscale (int): Downscale factor for processing frames.
    """
    super().__init__()

    self.method = method
    self.downscale = max(1, int(downscale))

    if self.method == "orb":
        self.detector = cv2.FastFeatureDetector_create(20)
        self.extractor = cv2.ORB_create()
        self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)

    elif self.method == "sift":
        self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
        self.matcher = cv2.BFMatcher(cv2.NORM_L2)

    elif self.method == "ecc":
        number_of_iterations = 5000
        termination_eps = 1e-6
        self.warp_mode = cv2.MOTION_EUCLIDEAN
        self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)

    elif self.method == "sparseOptFlow":
        self.feature_params = dict(
            maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
        )

    elif self.method in {"none", "None", None}:
        self.method = None
    else:
        raise ValueError(f"Error: Unknown GMC method:{method}")

    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False

apply(raw_frame, detections=None)

تطبيق اكتشاف الكائن على إطار خام باستخدام طريقة محددة.

البارامترات:

اسم نوع وصف افتراضي
raw_frame ndarray

الإطار الخام المراد معالجته.

مطلوب
detections list

قائمة الاكتشافات التي سيتم استخدامها في المعالجة.

None

ارجاع:

نوع وصف
ndarray

الإطار المعالج.

امثله:

>>> gmc = GMC()
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
شفرة المصدر في ultralytics/trackers/utils/gmc.py
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply object detection on a raw frame using specified method.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    if self.method in {"orb", "sift"}:
        return self.applyFeatures(raw_frame, detections)
    elif self.method == "ecc":
        return self.applyEcc(raw_frame)
    elif self.method == "sparseOptFlow":
        return self.applySparseOptFlow(raw_frame)
    else:
        return np.eye(2, 3)

applyEcc(raw_frame)

تطبيق خوارزمية ECC على إطار خام.

البارامترات:

اسم نوع وصف افتراضي
raw_frame ndarray

الإطار الخام المراد معالجته.

مطلوب

ارجاع:

نوع وصف
ndarray

الإطار المعالج.

امثله:

>>> gmc = GMC()
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
شفرة المصدر في ultralytics/trackers/utils/gmc.py
def applyEcc(self, raw_frame: np.array) -> np.array:
    """
    Apply ECC algorithm to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3, dtype=np.float32)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Run the ECC algorithm. The results are stored in warp_matrix.
    # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
    try:
        (_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
    except Exception as e:
        LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")

    return H

applyFeatures(raw_frame, detections=None)

قم بتطبيق الأساليب المستندة إلى الميزات مثل ORB أو غربلة على إطار خام.

البارامترات:

اسم نوع وصف افتراضي
raw_frame ndarray

الإطار الخام المراد معالجته.

مطلوب
detections list

قائمة الاكتشافات التي سيتم استخدامها في المعالجة.

None

ارجاع:

نوع وصف
ndarray

الإطار المعالج.

امثله:

>>> gmc = GMC()
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
شفرة المصدر في ultralytics/trackers/utils/gmc.py
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
    """
    Apply feature-based methods like ORB or SIFT to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.
        detections (list): List of detections to be used in the processing.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
        width = width // self.downscale
        height = height // self.downscale

    # Find the keypoints
    mask = np.zeros_like(frame)
    mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
    if detections is not None:
        for det in detections:
            tlbr = (det[:4] / self.downscale).astype(np.int_)
            mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0

    keypoints = self.detector.detect(frame, mask)

    # Compute the descriptors
    keypoints, descriptors = self.extractor.compute(frame, keypoints)

    # Handle first frame
    if not self.initializedFirstFrame:
        # Initialize data
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        # Initialization done
        self.initializedFirstFrame = True

        return H

    # Match descriptors
    knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)

    # Filter matches based on smallest spatial distance
    matches = []
    spatialDistances = []

    maxSpatialDistance = 0.25 * np.array([width, height])

    # Handle empty matches case
    if len(knnMatches) == 0:
        # Store to next iteration
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.prevDescriptors = copy.copy(descriptors)

        return H

    for m, n in knnMatches:
        if m.distance < 0.9 * n.distance:
            prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
            currKeyPointLocation = keypoints[m.trainIdx].pt

            spatialDistance = (
                prevKeyPointLocation[0] - currKeyPointLocation[0],
                prevKeyPointLocation[1] - currKeyPointLocation[1],
            )

            if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
                np.abs(spatialDistance[1]) < maxSpatialDistance[1]
            ):
                spatialDistances.append(spatialDistance)
                matches.append(m)

    meanSpatialDistances = np.mean(spatialDistances, 0)
    stdSpatialDistances = np.std(spatialDistances, 0)

    inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances

    goodMatches = []
    prevPoints = []
    currPoints = []
    for i in range(len(matches)):
        if inliers[i, 0] and inliers[i, 1]:
            goodMatches.append(matches[i])
            prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
            currPoints.append(keypoints[matches[i].trainIdx].pt)

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Draw the keypoint matches on the output image
    # if False:
    #     import matplotlib.pyplot as plt
    #     matches_img = np.hstack((self.prevFrame, frame))
    #     matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
    #     W = self.prevFrame.shape[1]
    #     for m in goodMatches:
    #         prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
    #         curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
    #         curr_pt[0] += W
    #         color = np.random.randint(0, 255, 3)
    #         color = (int(color[0]), int(color[1]), int(color[2]))
    #
    #         matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
    #         matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
    #         matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
    #
    #     plt.figure()
    #     plt.imshow(matches_img)
    #     plt.show()

    # Find rigid matrix
    if prevPoints.shape[0] > 4:
        H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        # Handle downscale
        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    # Store to next iteration
    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)
    self.prevDescriptors = copy.copy(descriptors)

    return H

applySparseOptFlow(raw_frame)

تطبيق طريقة التدفق البصري المتناثر على إطار خام.

البارامترات:

اسم نوع وصف افتراضي
raw_frame ndarray

الإطار الخام المراد معالجته.

مطلوب

ارجاع:

نوع وصف
ndarray

الإطار المعالج.

امثله:

>>> gmc = GMC()
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
       [4, 5, 6]])
شفرة المصدر في ultralytics/trackers/utils/gmc.py
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
    """
    Apply Sparse Optical Flow method to a raw frame.

    Args:
        raw_frame (np.ndarray): The raw frame to be processed.

    Returns:
        (np.ndarray): Processed frame.

    Examples:
        >>> gmc = GMC()
        >>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
        array([[1, 2, 3],
               [4, 5, 6]])
    """
    height, width, _ = raw_frame.shape
    frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
    H = np.eye(2, 3)

    # Downscale image
    if self.downscale > 1.0:
        frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))

    # Find the keypoints
    keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)

    # Handle first frame
    if not self.initializedFirstFrame or self.prevKeyPoints is None:
        self.prevFrame = frame.copy()
        self.prevKeyPoints = copy.copy(keypoints)
        self.initializedFirstFrame = True
        return H

    # Find correspondences
    matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)

    # Leave good correspondences only
    prevPoints = []
    currPoints = []

    for i in range(len(status)):
        if status[i]:
            prevPoints.append(self.prevKeyPoints[i])
            currPoints.append(matchedKeypoints[i])

    prevPoints = np.array(prevPoints)
    currPoints = np.array(currPoints)

    # Find rigid matrix
    if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
        H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)

        if self.downscale > 1.0:
            H[0, 2] *= self.downscale
            H[1, 2] *= self.downscale
    else:
        LOGGER.warning("WARNING: not enough matching points")

    self.prevFrame = frame.copy()
    self.prevKeyPoints = copy.copy(keypoints)

    return H

reset_params()

إعادة تعيين المعلمات.

شفرة المصدر في ultralytics/trackers/utils/gmc.py
def reset_params(self) -> None:
    """Reset parameters."""
    self.prevFrame = None
    self.prevKeyPoints = None
    self.prevDescriptors = None
    self.initializedFirstFrame = False





تم الإنشاء 2023-11-12، تم التحديث 2024-05-08
المؤلفون: برهان-Q (1)، جلين-جوتشر (3)