انتقل إلى المحتوى

مرجع ل ultralytics/utils/instance.py

ملاحظه

هذا الملف متاح في https://github.com/ultralytics/ultralytics/ نقطة / الرئيسية /ultralytics/ المرافق / instance.py. إذا اكتشفت مشكلة ، فيرجى المساعدة في إصلاحها من خلال المساهمة في طلب 🛠️ سحب. شكرا لك 🙏!



ultralytics.utils.instance.Bboxes

فئة للتعامل مع المربعات المحيطة.

يدعم الفصل تنسيقات مربعات محيطة مختلفة مثل "xyxy" و "xywh" و "ltwh". يجب توفير بيانات المربع المحيط في صفائف رقمية.

سمات:

اسم نوع وصف
bboxes ndarray

المربعات المحيطة المخزنة في صفيف numpy 2D.

format str

تنسيق المربعات المحيطة ("xyxy" أو "xywh" أو "ltwh").

ملاحظه

لا تعالج هذه الفئة تسوية أو إلغاء تسوية المربعات المحيطة.

شفرة المصدر في ultralytics/utils/instance.py
class Bboxes:
    """
    A class for handling bounding boxes.

    The class supports various bounding box formats like 'xyxy', 'xywh', and 'ltwh'.
    Bounding box data should be provided in numpy arrays.

    Attributes:
        bboxes (numpy.ndarray): The bounding boxes stored in a 2D numpy array.
        format (str): The format of the bounding boxes ('xyxy', 'xywh', or 'ltwh').

    Note:
        This class does not handle normalization or denormalization of bounding boxes.
    """

    def __init__(self, bboxes, format="xyxy") -> None:
        """Initializes the Bboxes class with bounding box data in a specified format."""
        assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2
        assert bboxes.shape[1] == 4
        self.bboxes = bboxes
        self.format = format
        # self.normalized = normalized

    def convert(self, format):
        """Converts bounding box format from one type to another."""
        assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
        if self.format == format:
            return
        elif self.format == "xyxy":
            func = xyxy2xywh if format == "xywh" else xyxy2ltwh
        elif self.format == "xywh":
            func = xywh2xyxy if format == "xyxy" else xywh2ltwh
        else:
            func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
        self.bboxes = func(self.bboxes)
        self.format = format

    def areas(self):
        """Return box areas."""
        return (
            (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # format xyxy
            if self.format == "xyxy"
            else self.bboxes[:, 3] * self.bboxes[:, 2]  # format xywh or ltwh
        )

    # def denormalize(self, w, h):
    #    if not self.normalized:
    #         return
    #     assert (self.bboxes <= 1.0).all()
    #     self.bboxes[:, 0::2] *= w
    #     self.bboxes[:, 1::2] *= h
    #     self.normalized = False
    #
    # def normalize(self, w, h):
    #     if self.normalized:
    #         return
    #     assert (self.bboxes > 1.0).any()
    #     self.bboxes[:, 0::2] /= w
    #     self.bboxes[:, 1::2] /= h
    #     self.normalized = True

    def mul(self, scale):
        """
        Args:
            scale (tuple | list | int): the scale for four coords.
        """
        if isinstance(scale, Number):
            scale = to_4tuple(scale)
        assert isinstance(scale, (tuple, list))
        assert len(scale) == 4
        self.bboxes[:, 0] *= scale[0]
        self.bboxes[:, 1] *= scale[1]
        self.bboxes[:, 2] *= scale[2]
        self.bboxes[:, 3] *= scale[3]

    def add(self, offset):
        """
        Args:
            offset (tuple | list | int): the offset for four coords.
        """
        if isinstance(offset, Number):
            offset = to_4tuple(offset)
        assert isinstance(offset, (tuple, list))
        assert len(offset) == 4
        self.bboxes[:, 0] += offset[0]
        self.bboxes[:, 1] += offset[1]
        self.bboxes[:, 2] += offset[2]
        self.bboxes[:, 3] += offset[3]

    def __len__(self):
        """Return the number of boxes."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
        """
        Concatenate a list of Bboxes objects into a single Bboxes object.

        Args:
            boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
            axis (int, optional): The axis along which to concatenate the bounding boxes.
                                   Defaults to 0.

        Returns:
            Bboxes: A new Bboxes object containing the concatenated bounding boxes.

        Note:
            The input should be a list or tuple of Bboxes objects.
        """
        assert isinstance(boxes_list, (list, tuple))
        if not boxes_list:
            return cls(np.empty(0))
        assert all(isinstance(box, Bboxes) for box in boxes_list)

        if len(boxes_list) == 1:
            return boxes_list[0]
        return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

    def __getitem__(self, index) -> "Bboxes":
        """
        Retrieve a specific bounding box or a set of bounding boxes using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired bounding boxes.

        Returns:
            Bboxes: A new Bboxes object containing the selected bounding boxes.

        Raises:
            AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of bounding boxes.
        """
        if isinstance(index, int):
            return Bboxes(self.bboxes[index].view(1, -1))
        b = self.bboxes[index]
        assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
        return Bboxes(b)

__getitem__(index)

استرجع مربع محيط معين أو مجموعة من المربعات المحيطة باستخدام الفهرسة.

البارامترات:

اسم نوع وصف افتراضي
index int, slice, or np.ndarray

الفهرس أو الشريحة أو الصفيف المنطقي المراد تحديده المربعات المحيطة المطلوبة.

مطلوب

ارجاع:

اسم نوع وصف
Bboxes Bboxes

كائن Bboxes جديد يحتوي على المربعات المحيطة المحددة.

يثير:

نوع وصف
AssertionError

إذا كانت المربعات المحيطة المفهرسة لا تشكل مصفوفة 2 الأبعاد.

ملاحظه

عند استخدام الفهرسة المنطقية ، تأكد من توفير صفيف منطقي بنفس الطول كعدد المربعات المحيطة.

شفرة المصدر في ultralytics/utils/instance.py
def __getitem__(self, index) -> "Bboxes":
    """
    Retrieve a specific bounding box or a set of bounding boxes using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired bounding boxes.

    Returns:
        Bboxes: A new Bboxes object containing the selected bounding boxes.

    Raises:
        AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of bounding boxes.
    """
    if isinstance(index, int):
        return Bboxes(self.bboxes[index].view(1, -1))
    b = self.bboxes[index]
    assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
    return Bboxes(b)

__init__(bboxes, format='xyxy')

تهيئة فئة Bboxes ببيانات المربع المحيط بتنسيق محدد.

شفرة المصدر في ultralytics/utils/instance.py
def __init__(self, bboxes, format="xyxy") -> None:
    """Initializes the Bboxes class with bounding box data in a specified format."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
    assert bboxes.ndim == 2
    assert bboxes.shape[1] == 4
    self.bboxes = bboxes
    self.format = format

__len__()

إرجاع عدد المربعات.

شفرة المصدر في ultralytics/utils/instance.py
def __len__(self):
    """Return the number of boxes."""
    return len(self.bboxes)

add(offset)

البارامترات:

اسم نوع وصف افتراضي
offset tuple | list | int

الإزاحة لأربعة تنسيقات.

مطلوب
شفرة المصدر في ultralytics/utils/instance.py
def add(self, offset):
    """
    Args:
        offset (tuple | list | int): the offset for four coords.
    """
    if isinstance(offset, Number):
        offset = to_4tuple(offset)
    assert isinstance(offset, (tuple, list))
    assert len(offset) == 4
    self.bboxes[:, 0] += offset[0]
    self.bboxes[:, 1] += offset[1]
    self.bboxes[:, 2] += offset[2]
    self.bboxes[:, 3] += offset[3]

areas()

مناطق صندوق الإرجاع.

شفرة المصدر في ultralytics/utils/instance.py
def areas(self):
    """Return box areas."""
    return (
        (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # format xyxy
        if self.format == "xyxy"
        else self.bboxes[:, 3] * self.bboxes[:, 2]  # format xywh or ltwh
    )

concatenate(boxes_list, axis=0) classmethod

ربط قائمة كائنات Bboxes في كائن Bboxes واحد.

البارامترات:

اسم نوع وصف افتراضي
boxes_list List[Bboxes]

قائمة من كائنات Bboxes لتسلسل.

مطلوب
axis int

المحور الذي يتم من خلاله تسلسل المربعات المحيطة. الإعدادات الافتراضية هي 0.

0

ارجاع:

اسم نوع وصف
Bboxes Bboxes

كائن Bboxes جديد يحتوي على المربعات المحيطة المتسلسلة.

ملاحظه

يجب أن يكون الإدخال عبارة عن قائمة أو مجموعة من كائنات Bbox.

شفرة المصدر في ultralytics/utils/instance.py
@classmethod
def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
    """
    Concatenate a list of Bboxes objects into a single Bboxes object.

    Args:
        boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
        axis (int, optional): The axis along which to concatenate the bounding boxes.
                               Defaults to 0.

    Returns:
        Bboxes: A new Bboxes object containing the concatenated bounding boxes.

    Note:
        The input should be a list or tuple of Bboxes objects.
    """
    assert isinstance(boxes_list, (list, tuple))
    if not boxes_list:
        return cls(np.empty(0))
    assert all(isinstance(box, Bboxes) for box in boxes_list)

    if len(boxes_list) == 1:
        return boxes_list[0]
    return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

convert(format)

يحول تنسيق المربع المحيط من نوع إلى آخر.

شفرة المصدر في ultralytics/utils/instance.py
def convert(self, format):
    """Converts bounding box format from one type to another."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    if self.format == format:
        return
    elif self.format == "xyxy":
        func = xyxy2xywh if format == "xywh" else xyxy2ltwh
    elif self.format == "xywh":
        func = xywh2xyxy if format == "xyxy" else xywh2ltwh
    else:
        func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
    self.bboxes = func(self.bboxes)
    self.format = format

mul(scale)

البارامترات:

اسم نوع وصف افتراضي
scale tuple | list | int

مقياس لأربعة تنسيقات.

مطلوب
شفرة المصدر في ultralytics/utils/instance.py
def mul(self, scale):
    """
    Args:
        scale (tuple | list | int): the scale for four coords.
    """
    if isinstance(scale, Number):
        scale = to_4tuple(scale)
    assert isinstance(scale, (tuple, list))
    assert len(scale) == 4
    self.bboxes[:, 0] *= scale[0]
    self.bboxes[:, 1] *= scale[1]
    self.bboxes[:, 2] *= scale[2]
    self.bboxes[:, 3] *= scale[3]



ultralytics.utils.instance.Instances

حاوية للمربعات المحيطة، المقاطع، والنقاط الرئيسية للكائنات المكتشفة في صورة ما.

سمات:

اسم نوع وصف
_bboxes Bboxes

كائن داخلي لمعالجة عمليات المربع المحيط.

keypoints ndarray

النقاط الرئيسية (x ، y ، مرئية) بالشكل [N ، 17 ، 3]. الافتراضي هو بلا.

normalized bool

علامة تشير إلى ما إذا كانت إحداثيات المربع المحيط قد تمت تسويتها أم لا.

segments ndarray

صفيف المقاطع بالشكل [N ، 1000 ، 2] بعد إعادة التشكيل.

البارامترات:

اسم نوع وصف افتراضي
bboxes ndarray

صفيف من المربعات المحيطة ذات الشكل [N، 4].

مطلوب
segments list | ndarray

قائمة أو صفيف من مقاطع الكائن. الافتراضي هو بلا.

None
keypoints ndarray

مجموعة من النقاط الرئيسية ذات الشكل [N ، 17 ، 3]. الافتراضي هو بلا.

None
bbox_format str

تنسيق المربعات المحيطة ("xywh" أو "xyxy"). الافتراضي هو "xywh".

'xywh'
normalized bool

ما إذا كانت إحداثيات المربع المحيط قد تمت تسويتها. الافتراضي هو صواب.

True

امثله:

# Create an Instances object
instances = Instances(
    bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
    segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
    keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]])
)
ملاحظه

تنسيق المربع المحيط هو إما "xywh" أو "xyxy" ، ويتم تحديده بواسطة bbox_format جدال. لا تقوم هذه الفئة بإجراء التحقق من صحة الإدخال ، وتفترض أن المدخلات جيدة التكوين.

شفرة المصدر في ultralytics/utils/instance.py
class Instances:
    """
    Container for bounding boxes, segments, and keypoints of detected objects in an image.

    Attributes:
        _bboxes (Bboxes): Internal object for handling bounding box operations.
        keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. Default is None.
        normalized (bool): Flag indicating whether the bounding box coordinates are normalized.
        segments (ndarray): Segments array with shape [N, 1000, 2] after resampling.

    Args:
        bboxes (ndarray): An array of bounding boxes with shape [N, 4].
        segments (list | ndarray, optional): A list or array of object segments. Default is None.
        keypoints (ndarray, optional): An array of keypoints with shape [N, 17, 3]. Default is None.
        bbox_format (str, optional): The format of bounding boxes ('xywh' or 'xyxy'). Default is 'xywh'.
        normalized (bool, optional): Whether the bounding box coordinates are normalized. Default is True.

    Examples:
        ```python
        # Create an Instances object
        instances = Instances(
            bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
            segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
            keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]])
        )
        ```

    Note:
        The bounding box format is either 'xywh' or 'xyxy', and is determined by the `bbox_format` argument.
        This class does not perform input validation, and it assumes the inputs are well-formed.
    """

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
        """
        Args:
            bboxes (ndarray): bboxes with shape [N, 4].
            segments (list | ndarray): segments.
            keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
        """
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
        self.keypoints = keypoints
        self.normalized = normalized
        self.segments = segments

    def convert_bbox(self, format):
        """Convert bounding box format."""
        self._bboxes.convert(format=format)

    @property
    def bbox_areas(self):
        """Calculate the area of bounding boxes."""
        return self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """This might be similar with denormalize func but without normalized sign."""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
        if bbox_only:
            return
        self.segments[..., 0] *= scale_w
        self.segments[..., 1] *= scale_h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= scale_w
            self.keypoints[..., 1] *= scale_h

    def denormalize(self, w, h):
        """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
        if not self.normalized:
            return
        self._bboxes.mul(scale=(w, h, w, h))
        self.segments[..., 0] *= w
        self.segments[..., 1] *= h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= w
            self.keypoints[..., 1] *= h
        self.normalized = False

    def normalize(self, w, h):
        """Normalize bounding boxes, segments, and keypoints to image dimensions."""
        if self.normalized:
            return
        self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
        self.segments[..., 0] /= w
        self.segments[..., 1] /= h
        if self.keypoints is not None:
            self.keypoints[..., 0] /= w
            self.keypoints[..., 1] /= h
        self.normalized = True

    def add_padding(self, padw, padh):
        """Handle rect and mosaic situation."""
        assert not self.normalized, "you should add padding with absolute coordinates."
        self._bboxes.add(offset=(padw, padh, padw, padh))
        self.segments[..., 0] += padw
        self.segments[..., 1] += padh
        if self.keypoints is not None:
            self.keypoints[..., 0] += padw
            self.keypoints[..., 1] += padh

    def __getitem__(self, index) -> "Instances":
        """
        Retrieve a specific instance or a set of instances using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired instances.

        Returns:
            Instances: A new Instances object containing the selected bounding boxes,
                       segments, and keypoints if present.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of instances.
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def flipud(self, h):
        """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
        if self._bboxes.format == "xyxy":
            y1 = self.bboxes[:, 1].copy()
            y2 = self.bboxes[:, 3].copy()
            self.bboxes[:, 1] = h - y2
            self.bboxes[:, 3] = h - y1
        else:
            self.bboxes[:, 1] = h - self.bboxes[:, 1]
        self.segments[..., 1] = h - self.segments[..., 1]
        if self.keypoints is not None:
            self.keypoints[..., 1] = h - self.keypoints[..., 1]

    def fliplr(self, w):
        """Reverses the order of the bounding boxes and segments horizontally."""
        if self._bboxes.format == "xyxy":
            x1 = self.bboxes[:, 0].copy()
            x2 = self.bboxes[:, 2].copy()
            self.bboxes[:, 0] = w - x2
            self.bboxes[:, 2] = w - x1
        else:
            self.bboxes[:, 0] = w - self.bboxes[:, 0]
        self.segments[..., 0] = w - self.segments[..., 0]
        if self.keypoints is not None:
            self.keypoints[..., 0] = w - self.keypoints[..., 0]

    def clip(self, w, h):
        """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
        ori_format = self._bboxes.format
        self.convert_bbox(format="xyxy")
        self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
        self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
        if ori_format != "xyxy":
            self.convert_bbox(format=ori_format)
        self.segments[..., 0] = self.segments[..., 0].clip(0, w)
        self.segments[..., 1] = self.segments[..., 1].clip(0, h)
        if self.keypoints is not None:
            self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
            self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

    def remove_zero_area_boxes(self):
        """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height."""
        good = self.bbox_areas > 0
        if not all(good):
            self._bboxes = self._bboxes[good]
            if len(self.segments):
                self.segments = self.segments[good]
            if self.keypoints is not None:
                self.keypoints = self.keypoints[good]
        return good

    def update(self, bboxes, segments=None, keypoints=None):
        """Updates instance variables."""
        self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
        if segments is not None:
            self.segments = segments
        if keypoints is not None:
            self.keypoints = keypoints

    def __len__(self):
        """Return the length of the instance list."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
        """
        Concatenates a list of Instances objects into a single Instances object.

        Args:
            instances_list (List[Instances]): A list of Instances objects to concatenate.
            axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

        Returns:
            Instances: A new Instances object containing the concatenated bounding boxes,
                       segments, and keypoints if present.

        Note:
            The `Instances` objects in the list should have the same properties, such as
            the format of the bounding boxes, whether keypoints are present, and if the
            coordinates are normalized.
        """
        assert isinstance(instances_list, (list, tuple))
        if not instances_list:
            return cls(np.empty(0))
        assert all(isinstance(instance, Instances) for instance in instances_list)

        if len(instances_list) == 1:
            return instances_list[0]

        use_keypoint = instances_list[0].keypoints is not None
        bbox_format = instances_list[0]._bboxes.format
        normalized = instances_list[0].normalized

        cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
        cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
        return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

    @property
    def bboxes(self):
        """Return bounding boxes."""
        return self._bboxes.bboxes

bbox_areas property

احسب مساحة المربعات المحيطة.

bboxes property

إرجاع المربعات المحيطة.

__getitem__(index)

استرداد مثيل معين أو مجموعة من المثيلات باستخدام الفهرسة.

البارامترات:

اسم نوع وصف افتراضي
index int, slice, or np.ndarray

الفهرس أو الشريحة أو الصفيف المنطقي المراد تحديده الحالات المطلوبة.

مطلوب

ارجاع:

اسم نوع وصف
Instances Instances

كائن مثيلات جديد يحتوي على المربعات المحيطة المحددة، الشرائح والنقاط الرئيسية إن وجدت.

ملاحظه

عند استخدام الفهرسة المنطقية ، تأكد من توفير صفيف منطقي بنفس الطول كعدد المثيلات.

شفرة المصدر في ultralytics/utils/instance.py
def __getitem__(self, index) -> "Instances":
    """
    Retrieve a specific instance or a set of instances using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired instances.

    Returns:
        Instances: A new Instances object containing the selected bounding boxes,
                   segments, and keypoints if present.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of instances.
    """
    segments = self.segments[index] if len(self.segments) else self.segments
    keypoints = self.keypoints[index] if self.keypoints is not None else None
    bboxes = self.bboxes[index]
    bbox_format = self._bboxes.format
    return Instances(
        bboxes=bboxes,
        segments=segments,
        keypoints=keypoints,
        bbox_format=bbox_format,
        normalized=self.normalized,
    )

__init__(bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True)

البارامترات:

اسم نوع وصف افتراضي
bboxes ndarray

بصناديق ذات شكل [N ، 4].

مطلوب
segments list | ndarray

قطاعات.

None
keypoints ndarray

النقاط الرئيسية (x ، y ، مرئية) بالشكل [N ، 17 ، 3].

None
شفرة المصدر في ultralytics/utils/instance.py
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
    """
    Args:
        bboxes (ndarray): bboxes with shape [N, 4].
        segments (list | ndarray): segments.
        keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
    """
    self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
    self.keypoints = keypoints
    self.normalized = normalized
    self.segments = segments

__len__()

إرجاع طول قائمة المثيلات.

شفرة المصدر في ultralytics/utils/instance.py
def __len__(self):
    """Return the length of the instance list."""
    return len(self.bboxes)

add_padding(padw, padh)

التعامل مع الوضع المستقيم والفسيفساء.

شفرة المصدر في ultralytics/utils/instance.py
def add_padding(self, padw, padh):
    """Handle rect and mosaic situation."""
    assert not self.normalized, "you should add padding with absolute coordinates."
    self._bboxes.add(offset=(padw, padh, padw, padh))
    self.segments[..., 0] += padw
    self.segments[..., 1] += padh
    if self.keypoints is not None:
        self.keypoints[..., 0] += padw
        self.keypoints[..., 1] += padh

clip(w, h)

يقطع المربعات المحيطة، الشرائح، وقيم النقاط الأساسية للبقاء ضمن حدود الصورة.

شفرة المصدر في ultralytics/utils/instance.py
def clip(self, w, h):
    """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
    ori_format = self._bboxes.format
    self.convert_bbox(format="xyxy")
    self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
    self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
    if ori_format != "xyxy":
        self.convert_bbox(format=ori_format)
    self.segments[..., 0] = self.segments[..., 0].clip(0, w)
    self.segments[..., 1] = self.segments[..., 1].clip(0, h)
    if self.keypoints is not None:
        self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
        self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

concatenate(instances_list, axis=0) classmethod

يربط قائمة كائنات المثيلات في كائن مثيلات واحد.

البارامترات:

اسم نوع وصف افتراضي
instances_list List[Instances]

قائمة كائنات المثيلات لتسلسل.

مطلوب
axis int

المحور الذي سيتم تسلسل المصفوفات على طوله. الإعدادات الافتراضية هي 0.

0

ارجاع:

اسم نوع وصف
Instances Instances

كائن مثيلات جديد يحتوي على المربعات المحيطة المتسلسلة ، الشرائح والنقاط الرئيسية إن وجدت.

ملاحظه

ال Instances يجب أن يكون للكائنات الموجودة في القائمة نفس الخصائص ، مثل تنسيق المربعات المحيطة، وما إذا كانت النقاط الرئيسية موجودة، وإذا كان الرمز يتم تطبيع الإحداثيات.

شفرة المصدر في ultralytics/utils/instance.py
@classmethod
def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
    """
    Concatenates a list of Instances objects into a single Instances object.

    Args:
        instances_list (List[Instances]): A list of Instances objects to concatenate.
        axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

    Returns:
        Instances: A new Instances object containing the concatenated bounding boxes,
                   segments, and keypoints if present.

    Note:
        The `Instances` objects in the list should have the same properties, such as
        the format of the bounding boxes, whether keypoints are present, and if the
        coordinates are normalized.
    """
    assert isinstance(instances_list, (list, tuple))
    if not instances_list:
        return cls(np.empty(0))
    assert all(isinstance(instance, Instances) for instance in instances_list)

    if len(instances_list) == 1:
        return instances_list[0]

    use_keypoint = instances_list[0].keypoints is not None
    bbox_format = instances_list[0]._bboxes.format
    normalized = instances_list[0].normalized

    cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
    cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
    cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
    return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

convert_bbox(format)

تحويل تنسيق المربع المحيط.

شفرة المصدر في ultralytics/utils/instance.py
def convert_bbox(self, format):
    """Convert bounding box format."""
    self._bboxes.convert(format=format)

denormalize(w, h)

يزيل تسوية المربعات، الشرائح، والنقاط الأساسية من الإحداثيات التي تمت تسويتها.

شفرة المصدر في ultralytics/utils/instance.py
def denormalize(self, w, h):
    """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
    if not self.normalized:
        return
    self._bboxes.mul(scale=(w, h, w, h))
    self.segments[..., 0] *= w
    self.segments[..., 1] *= h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= w
        self.keypoints[..., 1] *= h
    self.normalized = False

fliplr(w)

يعكس ترتيب المربعات المحيطة والمقاطع أفقيا.

شفرة المصدر في ultralytics/utils/instance.py
def fliplr(self, w):
    """Reverses the order of the bounding boxes and segments horizontally."""
    if self._bboxes.format == "xyxy":
        x1 = self.bboxes[:, 0].copy()
        x2 = self.bboxes[:, 2].copy()
        self.bboxes[:, 0] = w - x2
        self.bboxes[:, 2] = w - x1
    else:
        self.bboxes[:, 0] = w - self.bboxes[:, 0]
    self.segments[..., 0] = w - self.segments[..., 0]
    if self.keypoints is not None:
        self.keypoints[..., 0] = w - self.keypoints[..., 0]

flipud(h)

يقلب إحداثيات المربعات المحيطة، الشرائح، والنقاط الأساسية رأسيا.

شفرة المصدر في ultralytics/utils/instance.py
def flipud(self, h):
    """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
    if self._bboxes.format == "xyxy":
        y1 = self.bboxes[:, 1].copy()
        y2 = self.bboxes[:, 3].copy()
        self.bboxes[:, 1] = h - y2
        self.bboxes[:, 3] = h - y1
    else:
        self.bboxes[:, 1] = h - self.bboxes[:, 1]
    self.segments[..., 1] = h - self.segments[..., 1]
    if self.keypoints is not None:
        self.keypoints[..., 1] = h - self.keypoints[..., 1]

normalize(w, h)

قم بتطبيع المربعات المحيطة والمقاطع والنقاط الرئيسية إلى أبعاد الصورة.

شفرة المصدر في ultralytics/utils/instance.py
def normalize(self, w, h):
    """Normalize bounding boxes, segments, and keypoints to image dimensions."""
    if self.normalized:
        return
    self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
    self.segments[..., 0] /= w
    self.segments[..., 1] /= h
    if self.keypoints is not None:
        self.keypoints[..., 0] /= w
        self.keypoints[..., 1] /= h
    self.normalized = True

remove_zero_area_boxes()

قم بإزالة مربعات المنطقة الصفرية ، أي بعد قص بعض الصناديق قد يكون لها عرض أو ارتفاع صفري.

شفرة المصدر في ultralytics/utils/instance.py
def remove_zero_area_boxes(self):
    """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height."""
    good = self.bbox_areas > 0
    if not all(good):
        self._bboxes = self._bboxes[good]
        if len(self.segments):
            self.segments = self.segments[good]
        if self.keypoints is not None:
            self.keypoints = self.keypoints[good]
    return good

scale(scale_w, scale_h, bbox_only=False)

قد يكون هذا مشابها ل denormal func ولكن بدون علامة طبيعية.

شفرة المصدر في ultralytics/utils/instance.py
def scale(self, scale_w, scale_h, bbox_only=False):
    """This might be similar with denormalize func but without normalized sign."""
    self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
    if bbox_only:
        return
    self.segments[..., 0] *= scale_w
    self.segments[..., 1] *= scale_h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= scale_w
        self.keypoints[..., 1] *= scale_h

update(bboxes, segments=None, keypoints=None)

تحديث متغيرات المثيل.

شفرة المصدر في ultralytics/utils/instance.py
def update(self, bboxes, segments=None, keypoints=None):
    """Updates instance variables."""
    self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
    if segments is not None:
        self.segments = segments
    if keypoints is not None:
        self.keypoints = keypoints



ultralytics.utils.instance._ntuple(n)

من PyTorch الداخليه.

شفرة المصدر في ultralytics/utils/instance.py
def _ntuple(n):
    """From PyTorch internals."""

    def parse(x):
        """Parse bounding boxes format between XYWH and LTWH."""
        return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))

    return parse





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1), Laughing-q (1)