Zum Inhalt springen

COCO8-Pose-Datensatz

Einführung

Ultralytics COCO8-Pose is a small, but versatile pose detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.

This dataset is intended for use with Ultralytics HUB and YOLO11.

Datensatz YAML

Eine YAML-Datei (Yet Another Markup Language) wird verwendet, um die Konfiguration des Datensatzes zu definieren. Sie enthält Informationen über die Pfade des Datensatzes, Klassen und andere relevante Informationen. Im Fall des COCO8-Pose-Datensatzes ist die coco8-pose.yaml Datei wird verwaltet unter https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-pose.yaml.

ultralytics/cfg/datasets/coco8-pose.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco8-pose  ← downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

# Classes
names:
  0: person

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip

Verwendung

To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Beispiel für einen Zug

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Beispielbilder und Anmerkungen

Hier sind einige Beispiele von Bildern aus dem COCO8-Pose-Datensatz mit den entsprechenden Anmerkungen:

Datensatz Beispielbild

  • Mosaikbild: Dieses Bild zeigt einen Trainingsstapel, der aus Mosaikbildern des Datensatzes besteht. Beim Mosaikieren werden mehrere Bilder zu einem einzigen Bild zusammengefügt, um die Vielfalt der Objekte und Szenen in jedem Trainingsstapel zu erhöhen. Dadurch wird die Fähigkeit des Modells verbessert, sich auf verschiedene Objektgrößen, Seitenverhältnisse und Kontexte einzustellen.

Das Beispiel zeigt die Vielfalt und Komplexität der Bilder im COCO8-Pose-Datensatz und die Vorteile der Mosaikbildung im Trainingsprozess.

Zitate und Danksagungen

Wenn du den COCO-Datensatz in deiner Forschungs- oder Entwicklungsarbeit verwendest, zitiere bitte das folgende Papier:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.

FAQ

What is the COCO8-Pose dataset, and how is it used with Ultralytics YOLO11?

The COCO8-Pose dataset is a small, versatile pose detection dataset that includes the first 8 images from the COCO train 2017 set, with 4 images for training and 4 for validation. It's designed for testing and debugging object detection models and experimenting with new detection approaches. This dataset is ideal for quick experiments with Ultralytics YOLO11. For more details on dataset configuration, check out the dataset YAML file here.

How do I train a YOLO11 model using the COCO8-Pose dataset in Ultralytics?

To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, follow these examples:

Beispiel für einen Zug

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Eine umfassende Liste der Trainingsargumente findest du auf der Seite Modelltraining.

Was sind die Vorteile der Verwendung des COCO8-Pose-Datensatzes?

Der COCO8-Pose-Datensatz bietet mehrere Vorteile:

  • Kompakte Größe: Mit nur 8 Bildern ist es leicht zu handhaben und perfekt für schnelle Experimente.
  • Vielfältige Daten: Trotz seiner geringen Größe enthält es eine Vielzahl von Szenen, die für gründliche Pipeline-Tests nützlich sind.
  • Fehlerbeseitigung: Ideal zum Erkennen von Trainingsfehlern und zur Durchführung von Plausibilitätsprüfungen vor der Skalierung auf größere Datensätze.

Weitere Informationen zu den Funktionen und der Verwendung findest du im Abschnitt Einführung in das Dataset.

How does mosaicing benefit the YOLO11 training process using the COCO8-Pose dataset?

Beim Mosaicing, das in den Beispielbildern des COCO8-Positionsdatensatzes demonstriert wird, werden mehrere Bilder zu einem zusammengefasst, um die Vielfalt der Objekte und Szenen in jedem Trainingsstapel zu erhöhen. Diese Technik trägt dazu bei, die Fähigkeit des Modells zu verbessern, über verschiedene Objektgrößen, Seitenverhältnisse und Kontexte hinweg zu generalisieren, was letztendlich die Leistung des Modells erhöht. Im Abschnitt Beispielbilder und Anmerkungen findest du Beispielbilder.

Wo finde ich die YAML-Datei für den COCO8-Pose-Datensatz und wie kann ich sie verwenden?

The COCO8-Pose dataset YAML file can be found here. This file defines the dataset configuration, including paths, classes, and other relevant information. Use this file with the YOLO11 training scripts as mentioned in the Train Example section.

Weitere FAQs und eine ausführliche Dokumentation findest du in der Ultralytics Dokumentation.


📅 Created 11 months ago ✏️ Updated 11 days ago

Kommentare