Baidu's RT-DETR: Un Detector de Objetos en Tiempo Real Basado en Transformadores de Visión
Visión general
El Transformador de Detección en Tiempo Real (RT-DETR), desarrollado por Baidu, es un detector de objetos de última generación que proporciona rendimiento en tiempo real manteniendo una gran precisión. Se basa en la idea de DETR (el marco sin NMS), introduciendo al mismo tiempo una columna vertebral basada en conv y un codificador híbrido eficiente para ganar velocidad en tiempo real. RT-DETR procesa eficazmente las características multiescala desacoplando la interacción intraescala y la fusión entre escalas. El modelo es muy adaptable y admite un ajuste flexible de la velocidad de inferencia utilizando distintas capas de decodificación sin necesidad de reentrenamiento. RT-DETR destaca en backends acelerados como CUDA con TensorRT, superando a muchos otros detectores de objetos en tiempo real.
Observa: Transformador de Detección en Tiempo Real (RT-DETR)
Visión general de Baidu RT-DETR. El diagrama de arquitectura del modelo RT-DETR muestra las tres últimas etapas de la columna vertebral {S3, S4, S5} como entrada al codificador. El codificador híbrido eficiente transforma las características multiescala en una secuencia de características de imagen mediante la interacción de características intraescala (AIFI) y el módulo de fusión de características de escala cruzada (CCFM). La selección de consultas consciente de la IoU se emplea para seleccionar un número fijo de características de imagen que sirvan como consultas de objeto iniciales para el descodificador. Por último, el descodificador con cabezas de predicción auxiliares optimiza iterativamente las consultas de objetos para generar casillas y puntuaciones de confianza (fuente).
Características principales
- Codificador híbrido eficiente: RT-DETR de Baidu utiliza un codificador híbrido eficiente que procesa características multiescala desacoplando la interacción intraescala y la fusión entre escalas. Este diseño único basado en Transformadores de Visión reduce los costes computacionales y permite la detección de objetos en tiempo real.
- Selección de consulta consciente de IoU: RT-DETR de Baidu mejora la inicialización de la consulta de objetos utilizando la selección de consulta consciente de IoU. Esto permite que el modelo se centre en los objetos más relevantes de la escena, mejorando la precisión de la detección.
- Velocidad de inferencia adaptable: RT-DETR de Baidu admite ajustes flexibles de la velocidad de inferencia mediante el uso de distintas capas de descodificación sin necesidad de reentrenamiento. Esta adaptabilidad facilita la aplicación práctica en diversos escenarios de detección de objetos en tiempo real.
Modelos preentrenados
La API Ultralytics Python proporciona modelos PaddlePaddle RT-DETR preentrenados con diferentes escalas:
- RT-DETR-L: 53,0% AP en COCO val2017, 114 FPS en T4 GPU
- RT-DETR-X: 54,8% AP en COCO val2017, 74 FPS en T4 GPU
Ejemplos de uso
Este ejemplo proporciona ejemplos sencillos de entrenamiento e inferencia de RT-DETR . Para obtener documentación completa sobre estos y otros modos, consulta las páginas de documentación Predecir, Entrenar, Val y Exportar.
Ejemplo
from ultralytics import RTDETR
# Load a COCO-pretrained RT-DETR-l model
model = RTDETR("rtdetr-l.pt")
# Display model information (optional)
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
Tareas y modos admitidos
Esta tabla presenta los tipos de modelos, los pesos específicos preentrenados, las tareas que admite cada modelo y los distintos modos(Entrenar, Val, Predecir, Exportar) que admite, indicados con ✅ emojis.
Tipo de modelo | Pesos preentrenados | Tareas admitidas | Inferencia | Validación | Formación | Exportar |
---|---|---|---|---|---|---|
RT-DETR Grande | rtdetr-l.pt | Detección de objetos | ✅ | ✅ | ✅ | ✅ |
RT-DETR Extragrande | rtdetr-x.pt | Detección de objetos | ✅ | ✅ | ✅ | ✅ |
Citas y agradecimientos
Si utilizas RT-DETR de Baidu en tu trabajo de investigación o desarrollo, por favor, cita el documento original:
Nos gustaría agradecer a Baidu y al equipo de PaddlePaddle equipo por crear y mantener este valioso recurso para la comunidad de visión por ordenador. Su contribución al campo con el desarrollo del detector de objetos en tiempo real basado en Transformadores de Visión, RT-DETR, es muy apreciada.
PREGUNTAS FRECUENTES
¿Qué es el modelo RT-DETR de Baidu y cómo funciona?
RT-DETR (Transformador de Detección en Tiempo Real) de Baidu es un detector avanzado de objetos en tiempo real basado en la arquitectura del Transformador de Visión. Procesa eficazmente las características multiescala desacoplando la interacción intraescala y la fusión multiescala mediante su eficaz codificador híbrido. Al emplear una selección de consultas consciente de la IoU, el modelo se centra en los objetos más relevantes, mejorando la precisión de la detección. Su velocidad de inferencia adaptable, conseguida ajustando las capas del decodificador sin reentrenamiento, hace que RT-DETR sea adecuado para diversos escenarios de detección de objetos en tiempo real. Más información sobre las características de RT-DETR aquí.
¿Cómo puedo utilizar los modelos RT-DETR preentrenados que proporciona Ultralytics?
Puedes aprovechar la API Ultralytics Python para utilizar modelos PaddlePaddle RT-DETR preentrenados. Por ejemplo, para cargar un modelo RT-DETR-l preentrenado en COCO val2017 y conseguir altos FPS en T4 GPU, puedes utilizar el siguiente ejemplo:
Ejemplo
from ultralytics import RTDETR
# Load a COCO-pretrained RT-DETR-l model
model = RTDETR("rtdetr-l.pt")
# Display model information (optional)
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
¿Por qué debería elegir RT-DETR de Baidu en lugar de otros detectores de objetos en tiempo real?
La página RT-DETR de Baidu destaca por su eficaz codificador híbrido y su selección de consultas consciente del IoU, que reducen drásticamente los costes computacionales manteniendo una gran precisión. Su capacidad única para ajustar la velocidad de inferencia utilizando diferentes capas de decodificador sin necesidad de reentrenamiento añade una flexibilidad significativa. Esto lo hace especialmente ventajoso para aplicaciones que requieren rendimiento en tiempo real en backends acelerados como CUDA con TensorRT, superando a muchos otros detectores de objetos en tiempo real.
¿Cómo soporta RT-DETR la velocidad de inferencia adaptable a las distintas aplicaciones en tiempo real?
El sitio RT-DETR de Baidu permite realizar ajustes flexibles de la velocidad de inferencia utilizando distintas capas de descodificación sin necesidad de reentrenamiento. Esta adaptabilidad es crucial para escalar el rendimiento en diversas tareas de detección de objetos en tiempo real. Tanto si necesitas un procesamiento más rápido para necesidades de menor precisión como detecciones más lentas y precisas, RT-DETR puede adaptarse para satisfacer tus requisitos específicos.
¿Puedo utilizar los modelos de RT-DETR con otros modos de Ultralytics , como entrenamiento, validación y exportación?
Sí, los modelos de RT-DETR son compatibles con varios modos de Ultralytics , incluyendo entrenamiento, validación, predicción y exportación. Puedes consultar la documentación correspondiente para obtener instrucciones detalladas sobre cómo utilizar estos modos: Entrenar, Val, Predecir y Exportar. Esto garantiza un flujo de trabajo completo para desarrollar y desplegar tus soluciones de detección de objetos.