Advanced Data Visualization: Heatmaps using Ultralytics YOLO11 🚀
Introduction aux cartes thermiques
A heatmap generated with Ultralytics YOLO11 transforms complex data into a vibrant, color-coded matrix. This visual tool employs a spectrum of colors to represent varying data values, where warmer hues indicate higher intensities and cooler tones signify lower values. Heatmaps excel in visualizing intricate data patterns, correlations, and anomalies, offering an accessible and engaging approach to data interpretation across diverse domains.
Regarde : Heatmaps using Ultralytics YOLO11
Pourquoi choisir les cartes thermiques pour l'analyse des données ?
- Visualisation intuitive de la distribution des données : Les cartes thermiques simplifient la compréhension de la concentration et de la distribution des données, en convertissant des ensembles de données complexes en formats visuels faciles à comprendre.
- Détection efficace des tendances : En visualisant les données sous forme de carte thermique, il devient plus facile de repérer les tendances, les grappes et les valeurs aberrantes, ce qui facilite une analyse et des idées plus rapides.
- Amélioration de l'analyse spatiale et de la prise de décision : les cartes thermiques permettent d'illustrer les relations spatiales et de faciliter les processus de prise de décision dans des secteurs tels que l'intelligence économique, les études environnementales et l'urbanisme.
Applications dans le monde réel
Transport | Vente au détail |
---|---|
Ultralytics YOLO11 Transportation Heatmap | Ultralytics YOLO11 Retail Heatmap |
Heatmaps using Ultralytics YOLO11 Example
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init heatmap
heatmap = solutions.Heatmap(
show=True,
model="yolo11n.pt",
colormap=cv2.COLORMAP_PARULA,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = heatmap.generate_heatmap(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# line for object counting
line_points = [(20, 400), (1080, 404)]
# Init heatmap
heatmap = solutions.Heatmap(
show=True,
model="yolo11n.pt",
colormap=cv2.COLORMAP_PARULA,
region=line_points,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = heatmap.generate_heatmap(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Define polygon points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
# Init heatmap
heatmap = solutions.Heatmap(
show=True,
model="yolo11n.pt",
colormap=cv2.COLORMAP_PARULA,
region=region_points,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = heatmap.generate_heatmap(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
# Init heatmap
heatmap = solutions.Heatmap(
show=True,
model="yolo11n.pt",
colormap=cv2.COLORMAP_PARULA,
region=region_points,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = heatmap.generate_heatmap(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init heatmap
heatmap = solutions.Heatmap(
show=True,
model="yolo11n.pt",
classes=[0, 2],
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = heatmap.generate_heatmap(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
Arguments Heatmap()
Nom | Type | DĂ©faut | Description |
---|---|---|---|
colormap |
int |
cv2.COLORMAP_JET |
Carte de couleurs Ă utiliser pour la carte thermique. |
show |
bool |
False |
Permet d'afficher ou non l'image avec la superposition de la carte thermique. |
show_in |
bool |
True |
Affiche ou non le nombre d'objets entrant dans la région. |
show_out |
bool |
True |
Affiche ou non le nombre d'objets qui sortent de la région. |
region |
list |
None |
Points définissant la région de comptage (soit une ligne, soit un polygone). |
line_width |
int |
2 |
Épaisseur des lignes utilisées pour le dessin. |
Arguments model.track
Argument | Type | DĂ©faut | Description |
---|---|---|---|
source |
str |
None |
Specifies the source directory for images or videos. Supports file paths and URLs. |
persist |
bool |
False |
Enables persistent tracking of objects between frames, maintaining IDs across video sequences. |
tracker |
str |
botsort.yaml |
Specifies the tracking algorithm to use, e.g., bytetrack.yaml ou botsort.yaml . |
conf |
float |
0.3 |
Sets the confidence threshold for detections; lower values allow more objects to be tracked but may include false positives. |
iou |
float |
0.5 |
Sets the Intersection over Union (IoU) threshold for filtering overlapping detections. |
classes |
list |
None |
Filters results by class index. For example, classes=[0, 2, 3] only tracks the specified classes. |
verbose |
bool |
True |
Controls the display of tracking results, providing a visual output of tracked objects. |
Carte thermique COLORMAPs
Nom de la carte de couleurs | Description |
---|---|
cv::COLORMAP_AUTUMN |
Carte des couleurs d'automne |
cv::COLORMAP_BONE |
Carte des couleurs des os |
cv::COLORMAP_JET |
Carte des couleurs du jet |
cv::COLORMAP_WINTER |
Carte des couleurs de l'hiver |
cv::COLORMAP_RAINBOW |
Carte des couleurs de l'arc-en-ciel |
cv::COLORMAP_OCEAN |
Carte des couleurs de l'océan |
cv::COLORMAP_SUMMER |
Carte des couleurs de l'été |
cv::COLORMAP_SPRING |
Carte des couleurs du printemps |
cv::COLORMAP_COOL |
Superbe carte des couleurs |
cv::COLORMAP_HSV |
Carte de couleurs HSV (teinte, saturation, valeur) |
cv::COLORMAP_PINK |
Carte en couleur rose |
cv::COLORMAP_HOT |
Carte des couleurs chaudes |
cv::COLORMAP_PARULA |
Carte des couleurs de Parula |
cv::COLORMAP_MAGMA |
Carte des couleurs du magma |
cv::COLORMAP_INFERNO |
Carte des couleurs d'Inferno |
cv::COLORMAP_PLASMA |
Carte des couleurs du plasma |
cv::COLORMAP_VIRIDIS |
Carte des couleurs de Viridis |
cv::COLORMAP_CIVIDIS |
Carte des couleurs de Cividis |
cv::COLORMAP_TWILIGHT |
Carte couleur du crépuscule |
cv::COLORMAP_TWILIGHT_SHIFTED |
Carte des couleurs du crépuscule décalé |
cv::COLORMAP_TURBO |
Carte des couleurs du turbo |
cv::COLORMAP_DEEPGREEN |
Carte des couleurs du vert profond |
Ces cartes de couleurs sont couramment utilisées pour visualiser les données avec des représentations de couleurs différentes.
FAQ
How does Ultralytics YOLO11 generate heatmaps and what are their benefits?
Ultralytics YOLO11 generates heatmaps by transforming complex data into a color-coded matrix where different hues represent data intensities. Heatmaps make it easier to visualize patterns, correlations, and anomalies in the data. Warmer hues indicate higher values, while cooler tones represent lower values. The primary benefits include intuitive visualization of data distribution, efficient pattern detection, and enhanced spatial analysis for decision-making. For more details and configuration options, refer to the Heatmap Configuration section.
Can I use Ultralytics YOLO11 to perform object tracking and generate a heatmap simultaneously?
Yes, Ultralytics YOLO11 supports object tracking and heatmap generation concurrently. This can be achieved through its Heatmap
solution integrated with object tracking models. To do so, you need to initialize the heatmap object and use YOLO11's tracking capabilities. Here's a simple example:
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, show=True, model="yolo11n.pt")
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
im0 = heatmap.generate_heatmap(im0)
cv2.imshow("Heatmap", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
Pour plus de conseils, consulte la page sur le mode de suivi.
What makes Ultralytics YOLO11 heatmaps different from other data visualization tools like those from OpenCV or Matplotlib?
Ultralytics YOLO11 heatmaps are specifically designed for integration with its object detection and tracking models, providing an end-to-end solution for real-time data analysis. Unlike generic visualization tools like OpenCV or Matplotlib, YOLO11 heatmaps are optimized for performance and automated processing, supporting features like persistent tracking, decay factor adjustment, and real-time video overlay. For more information on YOLO11's unique features, visit the Ultralytics YOLO11 Introduction.
How can I visualize only specific object classes in heatmaps using Ultralytics YOLO11?
Tu peux visualiser des classes d'objets spécifiques en spécifiant les classes souhaitées dans la rubrique track()
du modèle YOLO . Par exemple, si tu ne veux visualiser que les voitures et les personnes (en supposant que leurs indices de classe sont 0 et 2), tu peux définir le paramètre classes
en conséquence.
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap = solutions.Heatmap(show=True, model="yolo11n.pt", classes=[0, 2])
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
im0 = heatmap.generate_heatmap(im0)
cv2.imshow("Heatmap", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
Why should businesses choose Ultralytics YOLO11 for heatmap generation in data analysis?
Ultralytics YOLO11 offers seamless integration of advanced object detection and real-time heatmap generation, making it an ideal choice for businesses looking to visualize data more effectively. The key advantages include intuitive data distribution visualization, efficient pattern detection, and enhanced spatial analysis for better decision-making. Additionally, YOLO11's cutting-edge features such as persistent tracking, customizable colormaps, and support for various export formats make it superior to other tools like TensorFlow and OpenCV for comprehensive data analysis. Learn more about business applications at Ultralytics Plans.