Skip to content

Visualisation avancée des données : Cartes thermiques à l'aide de Ultralytics YOLOv8 🚀

Introduction aux cartes thermiques

Une carte thermique générée avec Ultralytics YOLOv8 transforme des données complexes en une matrice vibrante, codée par couleur. Cet outil visuel utilise un spectre de couleurs pour représenter les valeurs variables des données, les teintes plus chaudes indiquant des intensités plus élevées et les tons plus froids des valeurs plus faibles. Les cartes thermiques excellent dans la visualisation de modèles de données complexes, de corrélations et d'anomalies, offrant une approche accessible et attrayante de l'interprétation des données dans divers domaines.



Regarde : Cartes thermiques utilisant Ultralytics YOLOv8

Pourquoi choisir les cartes thermiques pour l'analyse des données ?

  • Visualisation intuitive de la distribution des donnĂ©es : Les cartes thermiques simplifient la comprĂ©hension de la concentration et de la distribution des donnĂ©es, en convertissant des ensembles de donnĂ©es complexes en formats visuels faciles Ă  comprendre.
  • DĂ©tection efficace des tendances : En visualisant les donnĂ©es sous forme de carte thermique, il devient plus facile de repĂ©rer les tendances, les grappes et les valeurs aberrantes, ce qui facilite une analyse et des idĂ©es plus rapides.
  • AmĂ©lioration de l'analyse spatiale et de la prise de dĂ©cision : les cartes thermiques permettent d'illustrer les relations spatiales et de faciliter les processus de prise de dĂ©cision dans des secteurs tels que l'intelligence Ă©conomique, les Ă©tudes environnementales et l'urbanisme.

Applications dans le monde réel

Transport Vente au détail
Ultralytics YOLOv8 Carte thermique des transports Ultralytics YOLOv8 Carte thermique du commerce de détail
Ultralytics YOLOv8 Carte thermique des transports Ultralytics YOLOv8 Carte thermique du commerce de détail

Configuration de la carte thermique

  • heatmap_alpha: Assure-toi que cette valeur est comprise dans la plage (0,0 - 1,0).
  • decay_factor: UtilisĂ© pour supprimer la carte thermique après qu'un objet n'est plus dans le cadre, sa valeur doit Ă©galement ĂŞtre comprise dans la plage (0,0 - 1,0).

Cartes thermiques Ă  l'aide de Ultralytics YOLOv8 Exemple

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

line_points = [(20, 400), (1080, 404)]  # line for object counting

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=line_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define polygon points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8s.pt")  # YOLOv8 custom/pretrained model

im0 = cv2.imread("path/to/image.png")  # path to image file
h, w = im0.shape[:2]  # image height and width

# Heatmap Init
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

results = model.track(im0, persist=True)
im0 = heatmap_obj.generate_heatmap(im0, tracks=results)
cv2.imwrite("ultralytics_output.png", im0)
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

classes_for_heatmap = [0, 2]  # classes for heatmap

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False, classes=classes_for_heatmap)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()

Arguments Heatmap()

Nom Type DĂ©faut Description
classes_names dict None Dictionnaire des noms de classes.
imw int 0 Largeur de l'image.
imh int 0 Hauteur de l'image.
colormap int cv2.COLORMAP_JET Carte de couleurs Ă  utiliser pour la carte thermique.
heatmap_alpha float 0.5 Valeur de mélange alpha pour la superposition de la carte thermique.
view_img bool False Permet d'afficher ou non l'image avec la superposition de la carte thermique.
view_in_counts bool True Affiche ou non le nombre d'objets entrant dans la région.
view_out_counts bool True Affiche ou non le nombre d'objets qui sortent de la région.
count_reg_pts list ou None None Points définissant la région de comptage (soit une ligne, soit un polygone).
count_txt_color tuple (0, 0, 0) Couleur du texte pour l'affichage des comptages.
count_bg_color tuple (255, 255, 255) Couleur d'arrière-plan pour l'affichage des comptes.
count_reg_color tuple (255, 0, 255) Couleur pour la région de comptage.
region_thickness int 5 Épaisseur de la ligne de la région.
line_dist_thresh int 15 Seuil de distance pour le comptage basé sur les lignes.
line_thickness int 2 Épaisseur des lignes utilisées pour le dessin.
decay_factor float 0.99 Facteur de décroissance de la carte thermique pour réduire l'intensité au fil du temps.
shape str "circle" Forme des taches de la carte thermique ('cercle' ou 'rect').

Arguments model.track

Nom Type DĂ©faut Description
source im0 None répertoire source pour les images ou les vidéos
persist bool False persistance des pistes entre les images
tracker str botsort.yaml MĂ©thode de suivi 'bytetrack' ou 'botsort'
conf float 0.3 Seuil de confiance
iou float 0.5 Seuil de reconnaissance de dette
classes list None filtre les résultats par classe, c'est-à-dire classes=0, ou classes=[0,2,3]

Carte thermique COLORMAPs

Nom de la carte de couleurs Description
cv::COLORMAP_AUTUMN Carte des couleurs d'automne
cv::COLORMAP_BONE Carte des couleurs des os
cv::COLORMAP_JET Carte des couleurs du jet
cv::COLORMAP_WINTER Carte des couleurs de l'hiver
cv::COLORMAP_RAINBOW Carte des couleurs de l'arc-en-ciel
cv::COLORMAP_OCEAN Carte des couleurs de l'océan
cv::COLORMAP_SUMMER Carte des couleurs de l'été
cv::COLORMAP_SPRING Carte des couleurs du printemps
cv::COLORMAP_COOL Superbe carte des couleurs
cv::COLORMAP_HSV Carte de couleurs HSV (teinte, saturation, valeur)
cv::COLORMAP_PINK Carte en couleur rose
cv::COLORMAP_HOT Carte des couleurs chaudes
cv::COLORMAP_PARULA Carte des couleurs de Parula
cv::COLORMAP_MAGMA Carte des couleurs du magma
cv::COLORMAP_INFERNO Carte des couleurs d'Inferno
cv::COLORMAP_PLASMA Carte des couleurs du plasma
cv::COLORMAP_VIRIDIS Carte des couleurs de Viridis
cv::COLORMAP_CIVIDIS Carte des couleurs de Cividis
cv::COLORMAP_TWILIGHT Carte couleur du crépuscule
cv::COLORMAP_TWILIGHT_SHIFTED Carte des couleurs du crépuscule décalé
cv::COLORMAP_TURBO Carte des couleurs du turbo
cv::COLORMAP_DEEPGREEN Carte des couleurs du vert profond

Ces cartes de couleurs sont couramment utilisées pour visualiser les données avec des représentations de couleurs différentes.



Created 2023-12-07, Updated 2024-06-10
Authors: glenn-jocher (11), IvorZhu331 (1), RizwanMunawar (8), AyushExel (1), 1579093407@qq.com (1)

Commentaires