Skip to content

Comptage d'objets à l'aide de Ultralytics YOLOv8 🚀

Qu'est-ce que le comptage d'objets ?

Le comptage d'objets avec Ultralytics YOLOv8 implique l'identification et le comptage précis d'objets spécifiques dans les vidéos et les flux de caméras. YOLOv8 excelle dans les applications en temps réel, en fournissant un comptage d'objets efficace et précis pour divers scénarios tels que l'analyse des foules et la surveillance, grâce à ses algorithmes de pointe et à ses capacités d'apprentissage profond.


Regarde : Comptage d'objets Ă  l'aide de Ultralytics YOLOv8

Regarde : Class-wise Object Counting using Ultralytics YOLOv8

Avantages du comptage d'objets ?

  • Optimisation des ressources : Le comptage d'objets facilite la gestion efficace des ressources en fournissant des comptages prĂ©cis et en optimisant l'allocation des ressources dans des applications telles que la gestion des stocks.
  • SĂ©curitĂ© renforcĂ©e : Le comptage d'objets amĂ©liore la sĂ©curitĂ© et la surveillance en suivant et en comptant avec prĂ©cision les entitĂ©s, ce qui permet une dĂ©tection proactive des menaces.
  • Prise de dĂ©cision Ă©clairĂ©e : Le comptage d'objets offre des informations prĂ©cieuses pour la prise de dĂ©cision, l'optimisation des processus dans le commerce de dĂ©tail, la gestion du trafic et divers autres domaines.

Applications dans le monde réel

Logistique Aquaculture
Comptage de paquets sur bande transporteuse Utilisation Ultralytics YOLOv8 Compter les poissons dans la mer en utilisant Ultralytics YOLOv8
Comptage de paquets sur bande transporteuse Utilisation Ultralytics YOLOv8 Compter les poissons dans la mer en utilisant Ultralytics YOLOv8

Comptage d'objets Ă  l'aide de YOLOv8 Exemple

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]

# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init Object Counter
counter = solutions.ObjectCounter(
    view_img=True,
    reg_pts=region_points,
    classes_names=model.names,
    draw_tracks=True,
    line_thickness=2,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = counter.start_counting(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Define region points as a polygon with 5 points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init Object Counter
counter = solutions.ObjectCounter(
    view_img=True,
    reg_pts=region_points,
    classes_names=model.names,
    draw_tracks=True,
    line_thickness=2,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = counter.start_counting(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Define line points
line_points = [(20, 400), (1080, 400)]

# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init Object Counter
counter = solutions.ObjectCounter(
    view_img=True,
    reg_pts=line_points,
    classes_names=model.names,
    draw_tracks=True,
    line_thickness=2,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = counter.start_counting(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

line_points = [(20, 400), (1080, 400)]  # line or region points
classes_to_count = [0, 2]  # person and car classes for count

# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init Object Counter
counter = solutions.ObjectCounter(
    view_img=True,
    reg_pts=line_points,
    classes_names=model.names,
    draw_tracks=True,
    line_thickness=2,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)

    im0 = counter.start_counting(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
La région est mobile

Tu peux déplacer la région n'importe où dans le cadre en cliquant sur ses bords

Argument ObjectCounter

Voici un tableau avec les ObjectCounter arguments :

Nom Type DĂ©faut Description
classes_names dict None Dictionnaire des noms de classes.
reg_pts list [(20, 400), (1260, 400)] Liste des points définissant la région de comptage.
count_reg_color tuple (255, 0, 255) Couleur RVB de la région de comptage.
count_txt_color tuple (0, 0, 0) Couleur RVB du texte de comptage.
count_bg_color tuple (255, 255, 255) Couleur RVB de l'arrière-plan du texte de comptage.
line_thickness int 2 Épaisseur du trait pour les boîtes de délimitation.
track_thickness int 2 Épaisseur des lignes de piste.
view_img bool False Drapeau permettant de contrôler l'affichage ou non du flux vidéo.
view_in_counts bool True Indicateur permettant de contrôler l'affichage du nombre d'entrées sur le flux vidéo.
view_out_counts bool True Indicateur permettant de contrôler l'affichage ou non des décomptes de sortie sur le flux vidéo.
draw_tracks bool False Drapeau permettant de contrôler si les pistes de l'objet doivent être dessinées.
track_color tuple None Couleur RVB des pistes.
region_thickness int 5 Épaisseur de la région de comptage des objets.
line_dist_thresh int 15 Seuil de distance euclidienne pour le compteur de lignes.
cls_txtdisplay_gap int 50 Affiche l'Ă©cart entre chaque comptage de classe.

Arguments model.track

Nom Type DĂ©faut Description
source im0 None répertoire source pour les images ou les vidéos
persist bool False persistance des pistes entre les images
tracker str botsort.yaml MĂ©thode de suivi 'bytetrack' ou 'botsort'
conf float 0.3 Seuil de confiance
iou float 0.5 Seuil de reconnaissance de dette
classes list None filtre les résultats par classe, c'est-à-dire classes=0, ou classes=[0,2,3]
verbose bool True Affiche les résultats du suivi des objets


Created 2023-12-02, Updated 2024-06-10
Authors: glenn-jocher (14), IvorZhu331 (1), RizwanMunawar (6), AyushExel (1)

Commentaires